Menu Close

Calculate-the-force-F-required-to-cause-the-block-of-mass-m-1-20-kg-just-to-slide-under-the-block-of-mass-m-2-10-kg-coefficient-of-friction-0-25-for-all-surfaces-




Question Number 20409 by Tinkutara last updated on 26/Aug/17
Calculate the force (F) required to  cause the block of mass m_1  = 20 kg  just to slide under the block of mass  m_2  = 10 kg [coefficient of friction μ  = 0.25 for all surfaces]
$${Calculate}\:{the}\:{force}\:\left({F}\right)\:{required}\:{to} \\ $$$${cause}\:{the}\:{block}\:{of}\:{mass}\:{m}_{\mathrm{1}} \:=\:\mathrm{20}\:{kg} \\ $$$${just}\:{to}\:{slide}\:{under}\:{the}\:{block}\:{of}\:{mass} \\ $$$${m}_{\mathrm{2}} \:=\:\mathrm{10}\:{kg}\:\left[{coefficient}\:{of}\:{friction}\:\mu\right. \\ $$$$\left.=\:\mathrm{0}.\mathrm{25}\:{for}\:{all}\:{surfaces}\right] \\ $$
Commented by Tinkutara last updated on 26/Aug/17
Answered by ajfour last updated on 26/Aug/17
Tsin 53°+N_2 =m_2 g  Tcos 53°=μN_2   ⇒((m_2 g−N_2 )/(μN_2 )) =tan 53° =(4/3)    ((100−N_2 )/((N_2 /4)))=(4/3)   ⇒   300−3N_2 =N_2   N_2 =75 units  ⇒  f_2 =μN_2 =((75)/4)  f_1 =μN_1 =μ(m_1 g+N_2 )    =(1/4)(200+75)=((275)/4)  F_(minimum) =f_1 +f_2                =((275+75)/4) =((350)/4)    F_(minimum) = 87.5 N
$${T}\mathrm{sin}\:\mathrm{53}°+{N}_{\mathrm{2}} ={m}_{\mathrm{2}} {g} \\ $$$${T}\mathrm{cos}\:\mathrm{53}°=\mu{N}_{\mathrm{2}} \\ $$$$\Rightarrow\frac{{m}_{\mathrm{2}} {g}−{N}_{\mathrm{2}} }{\mu{N}_{\mathrm{2}} }\:=\mathrm{tan}\:\mathrm{53}°\:=\frac{\mathrm{4}}{\mathrm{3}} \\ $$$$\:\:\frac{\mathrm{100}−{N}_{\mathrm{2}} }{\left({N}_{\mathrm{2}} /\mathrm{4}\right)}=\frac{\mathrm{4}}{\mathrm{3}}\:\:\:\Rightarrow\:\:\:\mathrm{300}−\mathrm{3}{N}_{\mathrm{2}} ={N}_{\mathrm{2}} \\ $$$${N}_{\mathrm{2}} =\mathrm{75}\:{units}\:\:\Rightarrow\:\:{f}_{\mathrm{2}} =\mu{N}_{\mathrm{2}} =\frac{\mathrm{75}}{\mathrm{4}} \\ $$$${f}_{\mathrm{1}} =\mu{N}_{\mathrm{1}} =\mu\left({m}_{\mathrm{1}} {g}+{N}_{\mathrm{2}} \right) \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{200}+\mathrm{75}\right)=\frac{\mathrm{275}}{\mathrm{4}} \\ $$$${F}_{{minimum}} ={f}_{\mathrm{1}} +{f}_{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{275}+\mathrm{75}}{\mathrm{4}}\:=\frac{\mathrm{350}}{\mathrm{4}} \\ $$$$\:\:{F}_{{minimum}} =\:\mathrm{87}.\mathrm{5}\:{N}\: \\ $$
Commented by Tinkutara last updated on 26/Aug/17
Thank you very much Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *