Menu Close

calculate-the-product-of-the-1st-and-4th-terms-of-the-sequence-whose-mth-term-is-defined-as-m-1-3-m-2-m-1-




Question Number 125851 by harckinwunmy last updated on 14/Dec/20
calculate the product of the 1st and 4th terms   of the sequence whose mth term is defined as  ψ_(m+1) =(3^m )(−2)^(m−1)
$$\mathrm{calculate}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{the}\:\mathrm{1st}\:\mathrm{and}\:\mathrm{4th}\:\mathrm{terms}\: \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{sequence}\:\mathrm{whose}\:\mathrm{mth}\:\mathrm{term}\:\mathrm{is}\:\mathrm{defined}\:\mathrm{as} \\ $$$$\psi_{\mathrm{m}+\mathrm{1}} =\left(\mathrm{3}^{\mathrm{m}} \right)\left(−\mathrm{2}\right)^{\mathrm{m}−\mathrm{1}} \\ $$
Answered by floor(10²Eta[1]) last updated on 14/Dec/20
m=0⇒ψ_1 =3^0 (−2)^(−1) =((−1)/2)  m=3⇒ψ_4 =3^3 (−2)^2 =108  ψ_1 .ψ_4 =(((−1)/2))(108)=−54
$$\mathrm{m}=\mathrm{0}\Rightarrow\psi_{\mathrm{1}} =\mathrm{3}^{\mathrm{0}} \left(−\mathrm{2}\right)^{−\mathrm{1}} =\frac{−\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{m}=\mathrm{3}\Rightarrow\psi_{\mathrm{4}} =\mathrm{3}^{\mathrm{3}} \left(−\mathrm{2}\right)^{\mathrm{2}} =\mathrm{108} \\ $$$$\psi_{\mathrm{1}} .\psi_{\mathrm{4}} =\left(\frac{−\mathrm{1}}{\mathrm{2}}\right)\left(\mathrm{108}\right)=−\mathrm{54} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *