Menu Close

Calculate-the-sum-k-1-n-1-k-k-2-1-




Question Number 121950 by liberty last updated on 12/Nov/20
Calculate the sum Σ_(k = 1) ^n (1/( (√(k+(√(k^2 +1)))))) .
Calculatethesumnk=11k+k2+1.
Answered by bobhans last updated on 12/Nov/20
let a = k + (√(k^2 −1)) and b = k−(√(k^2 +1))   then we have → { ((a+b=2k)),((ab=k^2 −((√(k^2 −1)))^2 =1)) :}  so we get (1/( (√(k+(√(k^2 +1)))))) = (1/( (√a))) = b.  On the other hand, observe that  b = k−(√(k^2 −1)) =k−(√((k+1)(k−1)))  = ((k+1+k−1)/2)−(√((k+1)(k−1)))  = ((k+1−2(√((k+1)(k−1)))+k−1)/2)  = ((((√(k+1))−(√(k−1)))^2 )/2)  hence (√b) = (((√(k+1))−(√(k−1)))/( (√2)))  (√b) = (((√(k+1))−(√k)+(√k)−(√(k−1)))/( (√2)))  now the equation can be rewritte as   Σ_(k=1) ^n (1/( (√(k+(√(k^2 +1)))))) = Σ_(k = 1) ^n (((√(k+1))−(√k)+(√k)−(√(k−1)))/( (√2)))  by telescoping series gives  = (((√(n+1))−1)/( (√2))) + (((√n)−(√0))/( (√2)))  = (((√(n+1))+(√n)−1)/( (√2))).
leta=k+k21andb=kk2+1thenwehave{a+b=2kab=k2(k21)2=1soweget1k+k2+1=1a=b.Ontheotherhand,observethatb=kk21=k(k+1)(k1)=k+1+k12(k+1)(k1)=k+12(k+1)(k1)+k12=(k+1k1)22henceb=k+1k12b=k+1k+kk12nowtheequationcanberewritteasnk=11k+k2+1=nk=1k+1k+kk12bytelescopingseriesgives=n+112+n02=n+1+n12.
Commented by liberty last updated on 12/Nov/20
correct   and great...
correctandgreat

Leave a Reply

Your email address will not be published. Required fields are marked *