Menu Close

calculate-the-value-of-n-0-1947-1-2-n-2-1947-




Question Number 62669 by Sayantan chakraborty last updated on 24/Jun/19
calculate the value of Σ_(n=0) ^(1947) (1/(2^n +(√2^(1947) )))
calculatethevalueof1947n=012n+21947
Answered by tanmay last updated on 24/Jun/19
a=(√2^(1947) )   S=(1/(2^0 +a))+(1/(2^1 +a))+(1/(2^2 +a))+(1/(2^3 +a))+...+(1/(2^(1947) +a))  ((2+a)/2)≥(2×a)^(1/2)   2+a≥2×(2a)^(1/2)   (1/(2+a))≤(1/(2×(2a)^(1/2) ))  (1/(2+a))≤(1/(2(√a) ×(2)^(1/2) ))  S≤(1/(2(√a)))[(1/((2^0 )^(1/2) ))+(1/((2^1 )^(1/2) ))+(1/((2^2 )^(1/2) ))+...+(1/((2^(1947) )^(1/2) ))]  S≤(1/(2(√a)))[(1/(((√(2 )) )^0 ))+(1/(((√2) )^1 ))+(1/(((√2) )^2 ))+...+(1/(((√2) )^(1947) ))]  S≤(1/(2(√a)))×(((1/(((√2) )^0 )){1−((1/( (√2) )))^(1948) })/(1−((1/( (√2)))))) [using ((A(1−r^n ))/(1−r))]  S≤(1/(2(√a)))×(((√2)×(1−(1/2^(974) )))/( (√2) −1))  S≤(1/((2−(√2) ))) ×((1−(1/2^(974) ))/(((√2^(1947) )  )^(1/2) ))≈(1/((2−(√2) )))×(1/(((√2^(1947) ) )^(1/2) ))  i have found approximate value not  exact value so please cheack
a=21947S=120+a+121+a+122+a+123+a++121947+a2+a2(2×a)122+a2×(2a)1212+a12×(2a)1212+a12a×(2)12S12a[1(20)12+1(21)12+1(22)12++1(21947)12]S12a[1(2)0+1(2)1+1(2)2++1(2)1947]S12a×1(2)0{1(12)1948}1(12)[usingA(1rn)1r]S12a×2×(112974)21S1(22)×112974(21947)121(22)×1(21947)12ihavefoundapproximatevaluenotexactvaluesopleasecheack
Commented by Sayantan chakraborty last updated on 25/Jun/19
answer is ((487)/( (√)2^(1945) )).
answeris48721945.
Answered by ajfour last updated on 30/Jun/19
S=Σ_(n=0) ^(2N)  (1/(2^n +2^N ))     (where 2N=1947)     =(1/2^N ) (Σ_(n=0) ^(2N)  (1/(1+2^(n−N) )))  2^N S=(2^N /(2^N +1))+(2^N /(2^N +2))+(2^N /(2^N +2^2 ))+...    ......+(2/(2+1))+(1/(1+1))+(1/(1+2))+(1/(1+2^2 ))+..       .....+(2^2 /(2^2 +2^N +))(2/(2+2^N ))+(1/(1+2^N ))+....  ⇒    2^N S=(1/2)+N   S = ((2N+1)/(2(√2^(2N) )))    ⇒  S=  ((1948)/(2((√)2^(1947) ))) =((487)/( (√)2^(1945) )) .
S=2Nn=012n+2N(where2N=1947)=12N(2Nn=011+2nN)2NS=2N2N+1+2N2N+2+2N2N+22++22+1+11+1+11+2+11+22+....+2222+2N+22+2N+11+2N+.2NS=12+NS=2N+1222NS=19482(21947)=48721945.
Commented by Sayantan chakraborty last updated on 30/Jun/19
Yes it is correct solution.
\boldsymbolYes\boldsymbolit\boldsymbolis\boldsymbolcorrect\boldsymbolsolution.Yesitiscorrectsolution.

Leave a Reply

Your email address will not be published. Required fields are marked *