Question Number 62669 by Sayantan chakraborty last updated on 24/Jun/19

Answered by tanmay last updated on 24/Jun/19
![a=(√2^(1947) ) S=(1/(2^0 +a))+(1/(2^1 +a))+(1/(2^2 +a))+(1/(2^3 +a))+...+(1/(2^(1947) +a)) ((2+a)/2)≥(2×a)^(1/2) 2+a≥2×(2a)^(1/2) (1/(2+a))≤(1/(2×(2a)^(1/2) )) (1/(2+a))≤(1/(2(√a) ×(2)^(1/2) )) S≤(1/(2(√a)))[(1/((2^0 )^(1/2) ))+(1/((2^1 )^(1/2) ))+(1/((2^2 )^(1/2) ))+...+(1/((2^(1947) )^(1/2) ))] S≤(1/(2(√a)))[(1/(((√(2 )) )^0 ))+(1/(((√2) )^1 ))+(1/(((√2) )^2 ))+...+(1/(((√2) )^(1947) ))] S≤(1/(2(√a)))×(((1/(((√2) )^0 )){1−((1/( (√2) )))^(1948) })/(1−((1/( (√2)))))) [using ((A(1−r^n ))/(1−r))] S≤(1/(2(√a)))×(((√2)×(1−(1/2^(974) )))/( (√2) −1)) S≤(1/((2−(√2) ))) ×((1−(1/2^(974) ))/(((√2^(1947) ) )^(1/2) ))≈(1/((2−(√2) )))×(1/(((√2^(1947) ) )^(1/2) )) i have found approximate value not exact value so please cheack](https://www.tinkutara.com/question/Q62673.png)
Commented by Sayantan chakraborty last updated on 25/Jun/19

Answered by ajfour last updated on 30/Jun/19

Commented by Sayantan chakraborty last updated on 30/Jun/19
