Menu Close

Calculate-these-limits-Please-sirs-detail-




Question Number 87168 by mathocean1 last updated on 03/Apr/20
Calculate these limits:  Please sirs detail
Calculatetheselimits:Pleasesirsdetail
Commented by john santu last updated on 03/Apr/20
a) change x ⇒−t   lim_(t→∞)  ((−3t−1−cos t)/(−t))= 3  c) lim_(x→4)  ((1/( (√(2x+1))))/(1−(3/(2(√(3x+4)))))) = ((1/3)/(1−(3/8))) = ((1/3)/(5/8)) = (8/(15))  d) lim_(x→∞)  ((x(√(3+(1/x^2 ) )) −2x)/x) = (√3) −2
a)changextlimt3t1costt=3c)limx412x+11323x+4=13138=1358=815d)limxx3+1x22xx=32
Commented by mathocean1 last updated on 03/Apr/20
Commented by john santu last updated on 03/Apr/20
lim_(n→∞)  or lim_(x→∞)
limnorlimx
Commented by mathocean1 last updated on 03/Apr/20
lim_(x→∞)
limx
Commented by TANMAY PANACEA. last updated on 03/Apr/20
c)lim_(x→4)  (((√(2x+1)) −3)/(x−(√(3x+4)) ))  =lim_(x→4)  ((2x+1−9)/(x^2 −3x−4))×((x+(√(3x+4)))/( (√(2x+1)) +3))  =lim_(x→4)  ((2(x−4))/((x−4)(x+1)))×((x+(√(3x+4)))/( (√(2x+1)) +3))  =(2/5)×((4+4)/(3+3))=(2/5)×(4/3)=(8/(15))
c)limx42x+13x3x+4=limx42x+19x23x4×x+3x+42x+1+3=limx42(x4)(x4)(x+1)×x+3x+42x+1+3=25×4+43+3=25×43=815
Commented by TANMAY PANACEA. last updated on 03/Apr/20
d)lim_(x→∞)  (((√(3x^2 +1)) −2x)/x)  =lim_(x→∞)  ((x(√(3+(1/x^2 ))) −2x)/x)  =lim_(x→∞)  (((√(3+(1/x^2 ))) −2)/1)=(√3) −2
d)limx3x2+12xx=limxx3+1x22xx=limx3+1x221=32
Commented by mathmax by abdo last updated on 03/Apr/20
a) we have        lim_(x→−∞)   ((3x+1−cosx)/x)  =lim_(x→−∞)    ((x(3+(1/x)−((cosx)/x)))/x) =lim_(x→−∞)    3+(1/x)−((cosx)/x) =3
a)wehavelimx3x+1cosxx=limxx(3+1xcosxx)x=limx3+1xcosxx=3
Commented by mathmax by abdo last updated on 03/Apr/20
c) lim_(x→4)       (((√(2x+1))−3)/(x−(√(3x+4)))) =lim_(x→4)   ((2x+1−9)/( (√(2x+1))+3))×((x+(√(3x+4)))/(x^2 −3x−4))  =lim_(x→4)     ((x+(√(3x+4)))/( (√(2x+1))+3))×((2x−8)/((x^2 −3x−4))) =(4/3)lim_(x→4)    ((2(x−4))/((x−4)(x+1)))  =(4/3)lim_(x→4)    (2/(x+1)) =(4/3)×(2/5) =(8/(15))
c)limx42x+13x3x+4=limx42x+192x+1+3×x+3x+4x23x4=limx4x+3x+42x+1+3×2x8(x23x4)=43limx42(x4)(x4)(x+1)=43limx42x+1=43×25=815
Commented by mathmax by abdo last updated on 03/Apr/20
d) f(x)=(((√(3x^2 +1))−2x)/x)  we have  for x>0  (√(3x^2 +1))=x(√3)(√(1+(1/(3x^2 ))))∼x(√3){1+(1/(6x^2 ))} ⇒f(x)∼((x(√3)+((√3)/(6x))−2x)/x)  =(((√3)+((√3)/(6x^2 ))−2)/1) →(√3)−2 ⇒lim_(x→+∞)   f(x)=(√3)−2
d)f(x)=3x2+12xxwehaveforx>03x2+1=x31+13x2x3{1+16x2}f(x)x3+36x2xx=3+36x22132limx+f(x)=32
Commented by mathmax by abdo last updated on 03/Apr/20
b) let f(x)=((x^2 +1)/(x[x]))  changement x=−t give  f(x)=((t^2  +1)/(−t[−t]))    (x→−∞ ⇒t→ +∞)  and we have  [−t] =α−[t]  with α =0 or −1 ⇒[−t]∼−[t]∼−t ⇒  lim_(x→−∞)   f(x) =lim_(t→+∞)    −((t^2 +1)/(t(−t))) =lim_(t→+∞)   ((t^2  +1)/t^2 ) =1
b)letf(x)=x2+1x[x]changementx=tgivef(x)=t2+1t[t](xt+)andwehave[t]=α[t]withα=0or1[t][t]tlimxf(x)=limt+t2+1t(t)=limt+t2+1t2=1
Commented by john santu last updated on 03/Apr/20
b) what define E(x)?
b)whatdefineE(x)?
Commented by john santu last updated on 03/Apr/20
why E(x)= [ x ] ?   E(x) = μ ?
whyE(x)=[x]?E(x)=μ?
Commented by mathmax by abdo last updated on 03/Apr/20
E(x)=x  at ∞
E(x)=xat
Commented by mathmax by abdo last updated on 03/Apr/20
x =[x] +r  with 0≤r<1 ⇒(x/([x])) =1+(r/([x])) ⇒(x/([x])) ∼ 1  (x→+∞)
x=[x]+rwith0r<1x[x]=1+r[x]x[x]1(x+)
Commented by mathocean1 last updated on 03/Apr/20
E(x)≤x≤E(x)+1
E(x)xE(x)+1

Leave a Reply

Your email address will not be published. Required fields are marked *