Question Number 127774 by Bird last updated on 02/Jan/21
$${calculate}\:\:{u}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \sqrt{\mathrm{1}−{x}^{\mathrm{4}} }{dx} \\ $$
Answered by Dwaipayan Shikari last updated on 02/Jan/21
$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} \sqrt{\mathrm{1}−{x}^{\mathrm{4}} }\:\:\:\:\:{x}^{\mathrm{4}} ={u} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} {u}^{\frac{{n}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{3}}} \left(\mathrm{1}−{u}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} {du}=\frac{\mathrm{1}}{\mathrm{4}}.\frac{\Gamma\left({n}+\frac{\mathrm{2}}{\mathrm{3}}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}{\Gamma\left({n}+\frac{\mathrm{13}}{\mathrm{6}}\right)} \\ $$
Answered by mathmax by abdo last updated on 02/Jan/21
$$\mathrm{u}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{x}^{\mathrm{n}} \sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{4}} }\mathrm{dx}\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\mathrm{x}=\mathrm{t}^{\frac{\mathrm{1}}{\mathrm{4}}} \:\Rightarrow \\ $$$$\mathrm{u}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\mathrm{t}^{\frac{\mathrm{n}}{\mathrm{4}}} \left(\mathrm{1}−\mathrm{t}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:\frac{\mathrm{1}}{\mathrm{4}}\mathrm{t}^{\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}} \:\mathrm{dt}\:=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{t}^{\frac{\mathrm{n}}{\mathrm{4}}−\frac{\mathrm{3}}{\mathrm{4}}} \:\left(\mathrm{1}−\mathrm{t}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:\mathrm{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{t}^{\frac{\mathrm{n}+\mathrm{1}}{\mathrm{4}}−\mathrm{1}} \left(\mathrm{1}−\mathrm{t}\right)^{\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{1}} \:\mathrm{dt}\:=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{B}\left(\frac{\mathrm{n}+\mathrm{1}}{\mathrm{4}},\frac{\mathrm{3}}{\mathrm{2}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}×\frac{\Gamma\left(\frac{\mathrm{n}+\mathrm{1}}{\mathrm{4}}\right)×\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}{\Gamma\left(\frac{\mathrm{n}+\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{2}}\right)}\:=\frac{\mathrm{1}}{\mathrm{4}}\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\frac{\Gamma\left(\frac{\mathrm{n}+\mathrm{1}}{\mathrm{4}}\right)}{\Gamma\left(\frac{\mathrm{n}+\mathrm{7}}{\mathrm{4}}\right)} \\ $$$$\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)=\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\sqrt{\pi}}{\mathrm{2}}\:\Rightarrow\mathrm{u}_{\mathrm{n}} =\frac{\sqrt{\pi}}{\mathrm{8}}×\frac{\Gamma\left(\frac{\mathrm{n}+\mathrm{1}}{\mathrm{4}}\right)}{\Gamma\left(\frac{\mathrm{n}+\mathrm{7}}{\mathrm{4}}\right)} \\ $$