Menu Close

calculate-U-n-0-arctan-n-2-x-arctan-nx-x-dx-and-xetermine-nature-of-the-serie-U-n-




Question Number 88424 by abdomathmax last updated on 10/Apr/20
calculate U_n =∫_0 ^∞   ((arctan(n^2 x)−arctan(nx))/x)dx  and xetermine nature of the serie Σ U_n
$${calculate}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({n}^{\mathrm{2}} {x}\right)−{arctan}\left({nx}\right)}{{x}}{dx} \\ $$$${and}\:{xetermine}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma\:{U}_{{n}} \\ $$
Commented by mathmax by abdo last updated on 11/Apr/20
let I(ξ) =∫_0 ^ξ  ((arctan(ax)−arctan(bx))/x)dx ⇒  I(ξ) =∫_0 ^ξ  ((arctan(ax))/x)dx−∫_0 ^ξ  ((arctan(bx))/x)dx but  ∫_0 ^ξ  ((arctan(ax))/x)dx =_(ax=t)    ∫_0 ^(aξ)  ((arctan(t))/(t/a))×(dt/a) =∫_0 ^(aξ)  ((arctan(t))/t)dt  also ∫_0 ^ξ  ((arctan(bx))/x)dx =∫_0 ^(bξ)  ((arctan(t))/t)dt ⇒  I(ξ) =∫_0 ^(aξ)  ((arctant)/t)dt+∫_(bξ) ^0  ((arctan(t))/t)dt =∫_(bξ) ^(aξ)  ((arctan(t))/t)dt  ∃c  ∈]bξ,aξ[  / I(ξ) =arctan(ξ)∫_(bξ) ^(aξ)  (dt/t) =arctan(ξ)ln∣(a/b)∣ ⇒  lim_(ξ→+∞)  I(ξ) =∫_0 ^∞  ((arctan(ax)−arctan(bx))/x)dx=(π/2)ln∣(a/b)∣  ⇒U_n =(π/2)arctan((n^2 /n)) =(π/2)arctan(n)  we have lim_(n→+∞)  U_n =(π^2 /4)  ≠0 ⇒Σ U_n  diverges
$${let}\:{I}\left(\xi\right)\:=\int_{\mathrm{0}} ^{\xi} \:\frac{{arctan}\left({ax}\right)−{arctan}\left({bx}\right)}{{x}}{dx}\:\Rightarrow \\ $$$${I}\left(\xi\right)\:=\int_{\mathrm{0}} ^{\xi} \:\frac{{arctan}\left({ax}\right)}{{x}}{dx}−\int_{\mathrm{0}} ^{\xi} \:\frac{{arctan}\left({bx}\right)}{{x}}{dx}\:{but} \\ $$$$\int_{\mathrm{0}} ^{\xi} \:\frac{{arctan}\left({ax}\right)}{{x}}{dx}\:=_{{ax}={t}} \:\:\:\int_{\mathrm{0}} ^{{a}\xi} \:\frac{{arctan}\left({t}\right)}{\frac{{t}}{{a}}}×\frac{{dt}}{{a}}\:=\int_{\mathrm{0}} ^{{a}\xi} \:\frac{{arctan}\left({t}\right)}{{t}}{dt} \\ $$$${also}\:\int_{\mathrm{0}} ^{\xi} \:\frac{{arctan}\left({bx}\right)}{{x}}{dx}\:=\int_{\mathrm{0}} ^{{b}\xi} \:\frac{{arctan}\left({t}\right)}{{t}}{dt}\:\Rightarrow \\ $$$${I}\left(\xi\right)\:=\int_{\mathrm{0}} ^{{a}\xi} \:\frac{{arctant}}{{t}}{dt}+\int_{{b}\xi} ^{\mathrm{0}} \:\frac{{arctan}\left({t}\right)}{{t}}{dt}\:=\int_{{b}\xi} ^{{a}\xi} \:\frac{{arctan}\left({t}\right)}{{t}}{dt} \\ $$$$\left.\exists{c}\:\:\in\right]{b}\xi,{a}\xi\left[\:\:/\:{I}\left(\xi\right)\:={arctan}\left(\xi\right)\int_{{b}\xi} ^{{a}\xi} \:\frac{{dt}}{{t}}\:={arctan}\left(\xi\right){ln}\mid\frac{{a}}{{b}}\mid\:\Rightarrow\right. \\ $$$${lim}_{\xi\rightarrow+\infty} \:{I}\left(\xi\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({ax}\right)−{arctan}\left({bx}\right)}{{x}}{dx}=\frac{\pi}{\mathrm{2}}{ln}\mid\frac{{a}}{{b}}\mid \\ $$$$\Rightarrow{U}_{{n}} =\frac{\pi}{\mathrm{2}}{arctan}\left(\frac{{n}^{\mathrm{2}} }{{n}}\right)\:=\frac{\pi}{\mathrm{2}}{arctan}\left({n}\right) \\ $$$${we}\:{have}\:{lim}_{{n}\rightarrow+\infty} \:{U}_{{n}} =\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\:\:\neq\mathrm{0}\:\Rightarrow\Sigma\:{U}_{{n}} \:{diverges} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *