Menu Close

calculate-u-n-k-1-n-k-k-1-




Question Number 35035 by abdo mathsup 649 cc last updated on 14/May/18
calculate u_n = Σ_(k=1) ^n   (k/((k+1)!))
$${calculate}\:{u}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{{k}}{\left({k}+\mathrm{1}\right)!} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 14/May/18
T_k =(k/((k+1)!))  =((k+1−1)/((k+1)!))  T_k =(1/(k!))−(1/((k+1)!))  T_1 =(1/(1!))−(1/(2!))  T_2 =(1/(2!))−(1/(3!))  T_3 =(1/(3!))−(1/(4!))  ................  ...............  T_n =(1/(n!))−(1/((n+1)!))  so T_1 +T_2 +T_3 +....+T_n =(1/(1!))−(1/((n+1)!))  =1−(1/((n+1)!))
$${T}_{{k}} =\frac{{k}}{\left({k}+\mathrm{1}\right)!} \\ $$$$=\frac{{k}+\mathrm{1}−\mathrm{1}}{\left({k}+\mathrm{1}\right)!} \\ $$$${T}_{{k}} =\frac{\mathrm{1}}{{k}!}−\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)!} \\ $$$${T}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{1}!}−\frac{\mathrm{1}}{\mathrm{2}!} \\ $$$${T}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}!}−\frac{\mathrm{1}}{\mathrm{3}!} \\ $$$${T}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{3}!}−\frac{\mathrm{1}}{\mathrm{4}!} \\ $$$$……………. \\ $$$$…………… \\ $$$${T}_{{n}} =\frac{\mathrm{1}}{{n}!}−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!} \\ $$$${so}\:{T}_{\mathrm{1}} +{T}_{\mathrm{2}} +{T}_{\mathrm{3}} +….+{T}_{{n}} =\frac{\mathrm{1}}{\mathrm{1}!}−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!} \\ $$$$=\mathrm{1}−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *