Question Number 57667 by maxmathsup by imad last updated on 09/Apr/19
$${calculate}\:{U}_{{n}} =\int_{\frac{\pi}{{n}}} ^{\frac{\mathrm{2}\pi}{{n}}} \:\:\:\:\:\frac{{dx}}{\mathrm{2}\:+{sinx}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} \:\:\:\:\:\:\:{and}\:{lim}_{{n}\rightarrow+\infty} \:\:{nU}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{of}\:\Sigma\:{U}_{{n}} \\ $$
Commented by Abdo msup. last updated on 11/Apr/19
$$\left.\mathrm{1}\right)\:{changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)\:={t}\:{give}\: \\ $$$${U}_{{n}} =\:\int_{{tan}\left(\frac{\pi}{\mathrm{2}{n}}\right)} ^{{tan}\left(\frac{\pi}{{n}}\right)} \:\:\:\:\:\:\frac{\mathrm{2}{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\mathrm{2}+\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right)} \\ $$$$=\int_{{tan}\left(\frac{\pi}{\mathrm{2}{n}}\right)} ^{{tan}\left(\frac{\pi}{{n}}\right)} \:\:\frac{\mathrm{2}{dt}}{\mathrm{2}+\mathrm{2}{t}^{\mathrm{2}} \:+\mathrm{2}{t}}\:=\int_{{tan}\left(\frac{\pi}{\mathrm{2}{n}}\right)} ^{{tan}\left(\frac{\pi}{{n}}\right)} \:\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+{t}\:+\mathrm{1}} \\ $$$$=\int_{{tan}\left(\frac{\pi}{\mathrm{2}{n}}\right)} ^{{tan}\left(\frac{\pi}{{n}}\right)} \:\:\:\frac{{dt}}{\left({t}\:+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{3}}{\mathrm{4}}}\:=_{{t}+\frac{\mathrm{1}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{u}} \frac{\mathrm{4}}{\mathrm{3}}\:\:\:\int_{\frac{\mathrm{2}{tan}\left(\frac{\pi}{\mathrm{2}{n}}\right)+\mathrm{1}}{\:\sqrt{\mathrm{3}}}} ^{\frac{\mathrm{2}{tan}\left(\frac{\pi}{{n}}\right)+\mathrm{1}}{\:\sqrt{\mathrm{3}}}} \:\:\frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:{du} \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\:\left[{arctan}\left({u}\right)\right]_{\frac{\mathrm{2}{tan}\left(\frac{\pi}{\mathrm{2}{n}}\right)+\mathrm{1}}{\:\sqrt{\mathrm{3}}}} ^{\frac{\mathrm{2}{tan}\left(\frac{\pi}{{n}}\right)\:+\mathrm{1}}{\:\sqrt{\mathrm{3}}}} \:\:\:\:\:\Rightarrow \\ $$$${U}_{{n}} =\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\left\{\:{arctan}\left(\frac{\mathrm{2}{tan}\left(\frac{\pi}{{n}}\right)+\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)−{arctan}\left(\frac{\mathrm{2}{tan}\left(\frac{\pi}{\mathrm{2}{n}}\right)+\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\right\} \\ $$$$ \\ $$$$ \\ $$
Commented by Abdo msup. last updated on 11/Apr/19
$${let}\:{use}\:{arctan}\left(\frac{{x}}{{y}}\right)=\frac{\pi}{\mathrm{2}}\:−{arctan}\left(\frac{{y}}{{x}}\right)\:\:{for}\:{xy}>\mathrm{0} \\ $$$$\Rightarrow{arctan}\left(\frac{\mathrm{2}{tan}\left(\frac{\pi}{{n}}\right)+\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)=\frac{\pi}{\mathrm{2}}\:−{arctan}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}{tan}\left(\frac{\pi}{{n}}\right)+\mathrm{1}}\right) \\ $$$$\mathrm{2}{tan}\left(\frac{\pi}{{n}}\right)+\mathrm{1}\:\sim\frac{\mathrm{2}\pi}{{n}}+\mathrm{1}\:\Rightarrow\frac{\sqrt{\mathrm{3}}}{\mathrm{2}{tan}\left(\frac{\pi}{{n}}\right)+\mathrm{1}}\:\sim\:\frac{\sqrt{\mathrm{3}}}{\mathrm{1}+\frac{\mathrm{2}\pi}{{n}}} \\ $$$$\sim\sqrt{\mathrm{3}}\left\{\mathrm{1}−\frac{\mathrm{2}\pi}{{n}}\right\}\:\Rightarrow \\ $$$${arctan}\left(\frac{\mathrm{2}{tan}\left(\frac{\pi}{{n}}\right)+\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\:\sim\frac{\pi}{\mathrm{2}}\:−\sqrt{\mathrm{3}}\left\{\mathrm{1}−\frac{\mathrm{2}\pi}{{n}}\right\}\:{also} \\ $$$${arctan}\left(\frac{\mathrm{2}{tan}\left(\frac{\pi}{\mathrm{2}{n}}\right)+\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\:\sim\frac{\pi}{\mathrm{2}}\:−\sqrt{\mathrm{3}}\left\{\mathrm{1}−\frac{\pi}{{n}}\right\}\:\Rightarrow \\ $$$${U}_{{n}} \:\sim\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\left\{\frac{\pi}{\mathrm{2}}\:−\sqrt{\mathrm{3}}\:+\frac{\mathrm{2}\pi\sqrt{\mathrm{3}}}{{n}}\:−\frac{\pi}{\mathrm{2}}\:+\sqrt{\mathrm{3}}−\frac{\pi\sqrt{\mathrm{3}}}{{n}}\right\} \\ $$$${U}_{{n}} \sim\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}.\frac{\pi\sqrt{\mathrm{3}}}{{n}}\:\Rightarrow\:{lim}_{{n}\rightarrow+\infty} \:{nU}_{{n}} =\:\mathrm{2}\pi\:. \\ $$
Commented by Abdo msup. last updated on 11/Apr/19
$$\left.\mathrm{2}\right)\:{we}\:{have}\:{U}_{{n}} \sim\frac{\mathrm{2}\pi}{{n}}\:\:\:{and}\:{the}\:{serie}\:\Sigma\:\frac{\mathrm{2}\pi}{{n}}\:{diverges}\:{so} \\ $$$$\Sigma{U}_{{n}} \:{is}\:{divergent}\:. \\ $$