Menu Close

calculate-U-n-pi-n-2pi-n-dx-2-sinx-1-calculate-U-n-and-lim-n-nU-n-2-find-nature-of-U-n-




Question Number 57667 by maxmathsup by imad last updated on 09/Apr/19
calculate U_n =∫_(π/n) ^((2π)/n)      (dx/(2 +sinx))  1) calculate U_n        and lim_(n→+∞)   nU_n   2) find nature of Σ U_n
calculateUn=πn2πndx2+sinx1)calculateUnandlimn+nUn2)findnatureofΣUn
Commented by Abdo msup. last updated on 11/Apr/19
1) changement tan((x/2)) =t give   U_n = ∫_(tan((π/(2n)))) ^(tan((π/n)))       ((2dt)/((1+t^2 )(2+((2t)/(1+t^2 )))))  =∫_(tan((π/(2n)))) ^(tan((π/n)))   ((2dt)/(2+2t^2  +2t)) =∫_(tan((π/(2n)))) ^(tan((π/n)))    (dt/(t^2  +t +1))  =∫_(tan((π/(2n)))) ^(tan((π/n)))    (dt/((t +(1/2))^2  +(3/4))) =_(t+(1/2)=((√3)/2)u) (4/3)   ∫_((2tan((π/(2n)))+1)/( (√3))) ^((2tan((π/n))+1)/( (√3)))   (1/(1+u^2 )) ((√3)/2) du  =(2/( (√3))) [arctan(u)]_((2tan((π/(2n)))+1)/( (√3))) ^((2tan((π/n)) +1)/( (√3)))      ⇒  U_n =(2/( (√3))){ arctan(((2tan((π/n))+1)/( (√3))))−arctan(((2tan((π/(2n)))+1)/( (√3))))}
1)changementtan(x2)=tgiveUn=tan(π2n)tan(πn)2dt(1+t2)(2+2t1+t2)=tan(π2n)tan(πn)2dt2+2t2+2t=tan(π2n)tan(πn)dtt2+t+1=tan(π2n)tan(πn)dt(t+12)2+34=t+12=32u432tan(π2n)+132tan(πn)+1311+u232du=23[arctan(u)]2tan(π2n)+132tan(πn)+13Un=23{arctan(2tan(πn)+13)arctan(2tan(π2n)+13)}
Commented by Abdo msup. last updated on 11/Apr/19
let use arctan((x/y))=(π/2) −arctan((y/x))  for xy>0  ⇒arctan(((2tan((π/n))+1)/( (√3))))=(π/2) −arctan(((√3)/(2tan((π/n))+1)))  2tan((π/n))+1 ∼((2π)/n)+1 ⇒((√3)/(2tan((π/n))+1)) ∼ ((√3)/(1+((2π)/n)))  ∼(√3){1−((2π)/n)} ⇒  arctan(((2tan((π/n))+1)/( (√3)))) ∼(π/2) −(√3){1−((2π)/n)} also  arctan(((2tan((π/(2n)))+1)/( (√3)))) ∼(π/2) −(√3){1−(π/n)} ⇒  U_n  ∼ (2/( (√3))){(π/2) −(√3) +((2π(√3))/n) −(π/2) +(√3)−((π(√3))/n)}  U_n ∼(2/( (√3))).((π(√3))/n) ⇒ lim_(n→+∞)  nU_n = 2π .
letusearctan(xy)=π2arctan(yx)forxy>0arctan(2tan(πn)+13)=π2arctan(32tan(πn)+1)2tan(πn)+12πn+132tan(πn)+131+2πn3{12πn}arctan(2tan(πn)+13)π23{12πn}alsoarctan(2tan(π2n)+13)π23{1πn}Un23{π23+2π3nπ2+3π3n}Un23.π3nlimn+nUn=2π.
Commented by Abdo msup. last updated on 11/Apr/19
2) we have U_n ∼((2π)/n)   and the serie Σ ((2π)/n) diverges so  ΣU_n  is divergent .
2)wehaveUn2πnandtheserieΣ2πndivergessoΣUnisdivergent.

Leave a Reply

Your email address will not be published. Required fields are marked *