Menu Close

calculate-W-2x-2-3y-2-x-y-dxdy-with-W-x-y-R-2-0-lt-x-lt-1-and-0-lt-y-lt-1-




Question Number 60506 by prof Abdo imad last updated on 21/May/19
calculate ∫∫_W      ((√(2x^2  +3y^2 ))/(x+y)) dxdy  with W ={(x,y)∈R^2 / 0<x<1 and 0<y<1.
calculateW2x2+3y2x+ydxdywithW={(x,y)R2/0<x<1and0<y<1.
Commented by Mr X pcx last updated on 23/May/19
let consider the diffromorphism  x=(r/( (√2))) cosθ  and y =(r/( (√3))) sinθ  0<x^2  +y^2 <2 ⇒0<(r^2 /2) +(r^2 /3)<2 ⇒  0<(5/6) r^2 <2 ⇒0<r^2 <((12)/5) ⇒0<r<((2(√3))/( (√5)))  M_j = (((  (∂ϕ_1 /∂r)               (∂ϕ_1 /∂θ))),(((∂ϕ_2 /∂r)                   (∂ϕ_2 /∂θ))) )  =  ((((1/( (√2)))cosθ           −(r/( (√2)))sinθ)),(((1/( (√3)))sinθ              (r/( (√3)))cosθ)) )  det(M_j ) =(r/( (√2)(√3)))   ⇒  I = ∫∫_(0<r<((2(√3))/( (√5)))   and  0<θ<(π/2))   (r/((r/( (√2)))cosθ +(r/( (√3)))sinθ))(1/( (√6))) rdrdθ  =∫_0 ^((2(√3))/( (√5)))   rdr ∫_0 ^(π/2)    (dθ/( (√3)cosθ +(√2)sinθ))  ∫_0 ^((2(√3))/( (√5)))  rdr =[(r^2 /2)]_0 ^((2(√3))/( (√5)))  =(1/2)(((4.3)/5)) =(6/5)  ∫_0 ^(π/2)     (dθ/( (√3)cosθ +(√2)sinθ)) =_(tan((θ/2)) =x)   =∫_0 ^1    ((2dx)/((1+x^2 ){ (√3)((1−x^2 )/(1+x^2 )) +(√2) ((2x)/(1+x^2 ))}))  =∫_0 ^1   ((2dx)/( (√3)−(√3)x^2  +2(√2)x))  =∫_0 ^1    ((−2dx)/( (√3)x^2  −2(√2)x −(√3)))  let drcompose F(x)=((−2)/( (√3)x^2 −2(√2)x −(√3)))  Δ^′  =2 +3 =5 ⇒x_1 =(((√2) +(√5))/( (√3)))  x_2 =(((√2)−(√5))/( (√3))) ⇒  F(x) =((−2)/( (√3)(x−x_1 )(x−x_2 )))  =((−2)/( (√3)(x_1 −x_2 ))){ (1/(x−x_1 )) −(1/(x−x_2 ))}  =((−2)/( (√3)(((2(√5))/( (√3)))))){ (1/(x−x_1 )) −(1/(x−x_2 ))}  =−(1/( (√5))){ ....} ⇒  ∫_0 ^1  F(x)dx?=(1/( (√5)))[ln∣x−x_2 ∣−ln∣x−x_1 ∣]  =(1/( (√5)))[ln∣((x−x_2 )/(x−x_1 ))∣]_0 ^1   =(1/( (√5)))( ln(((1−(((√2)−(√5))/( (√3))))/(1−(((√2) +(√5))/( (√3))))))−ln∣(((√2)−(√5))/( (√2) +(√5)))∣)  =(1/( (√5)))( ln∣(((√3)−(√2)+(√5))/( (√3)−(√2) +(√5)))∣ −ln((((√5)−(√2))/( (√5) +(√2))))  so the vslue of  I is known.
letconsiderthediffromorphismx=r2cosθandy=r3sinθ0<x2+y2<20<r22+r23<20<56r2<20<r2<1250<r<235Mj=(φ1rφ1θφ2rφ2θ)=(12cosθr2sinθ13sinθr3cosθ)det(Mj)=r23I=0<r<235and0<θ<π2rr2cosθ+r3sinθ16rdrdθ=0235rdr0π2dθ3cosθ+2sinθ0235rdr=[r22]0235=12(4.35)=650π2dθ3cosθ+2sinθ=tan(θ2)=x=012dx(1+x2){31x21+x2+22x1+x2}=012dx33x2+22x=012dx3x222x3letdrcomposeF(x)=23x222x3Δ=2+3=5x1=2+53x2=253F(x)=23(xx1)(xx2)=23(x1x2){1xx11xx2}=23(253){1xx11xx2}=15{.}01F(x)dx?=15[lnxx2lnxx1]=15[lnxx2xx1]01=15(ln(125312+53)ln252+5)=15(ln32+532+5ln(525+2)sothevslueofIisknown.

Leave a Reply

Your email address will not be published. Required fields are marked *