Menu Close

calculate-w-x-y-e-x-y-dxdy-with-w-x-y-R-2-x-1-and-y-1-3-




Question Number 34292 by math khazana by abdo last updated on 03/May/18
calculate ∫∫_w  (x+y)e^(x−y) dxdy with  w={(x,y)∈R^2  / ∣x∣ ≤1  and ∣y+1∣≤3 }
calculatew(x+y)exydxdywithw={(x,y)R2/x1andy+1∣⩽3}
Commented by math khazana by abdo last updated on 07/May/18
∣y+1∣≤3 ⇔−3≤ y+1≤3 ⇔  −4 ≤y≤4  so  ∫∫_w  (x+y) e^(x−y) dxdy   =∫_(−4) ^4  ( ∫_(−1) ^1 (x+y)e^(x−y) dx)dy but  A(y) = ∫_(−1) ^1  (x+y) e^(x−y) dx =e^(−y)  ∫_(−1) ^1 (x+y) e^x dx  = e^(−y) {  [(x+y)e^x ]_(−1) ^1  −∫_(−1) ^1  e^x dx}  = e^(−y) {  (1+y)e −(−1+y)e^(−1)   −(e −e^(−1) )}  =e(1+y) e^(−y)   +e^(−1) (1−y) e^(−y)  −(e−e^(−1) )e^(−y)   ∫∫_w (x+y)e^(x−y) dxdy   = e∫_(−4) ^4 (1+y)e^(−y) dy  +e^(−1)  ∫_(−4) ^4 (1−y)e^(−y)  −(e−e^(−1) )∫_(−4) ^4  e^(−y) dy  by parts  ∫_(−4) ^4 (1+y)e^(−y) dy =[−(1+y)e^(−y) ]_(−4) ^4  +∫_(−4) ^4  e^(−y) dy  =−3 e^4  −5 e^(−4)   + [ −e^(−y) ]_(−4) ^4   = −3 e^4   −5 e^(−4)   + e^4  −e^(−4)   we follow the?same method for the other integrals  ...
y+1∣⩽33y+134y4sow(x+y)exydxdy=44(11(x+y)exydx)dybutA(y)=11(x+y)exydx=ey11(x+y)exdx=ey{[(x+y)ex]1111exdx}=ey{(1+y)e(1+y)e1(ee1)}=e(1+y)ey+e1(1y)ey(ee1)eyw(x+y)exydxdy=e44(1+y)eydy+e144(1y)ey(ee1)44eydybyparts44(1+y)eydy=[(1+y)ey]44+44eydy=3e45e4+[ey]44=3e45e4+e4e4wefollowthe?samemethodfortheotherintegrals

Leave a Reply

Your email address will not be published. Required fields are marked *