Menu Close

calculate-w-x-y-e-x-y-dxdy-with-w-x-y-R-2-x-1-and-y-1-3-




Question Number 34292 by math khazana by abdo last updated on 03/May/18
calculate ∫∫_w  (x+y)e^(x−y) dxdy with  w={(x,y)∈R^2  / ∣x∣ ≤1  and ∣y+1∣≤3 }
$${calculate}\:\int\int_{{w}} \:\left({x}+{y}\right){e}^{{x}−{y}} {dxdy}\:{with} \\ $$$${w}=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} \:/\:\mid{x}\mid\:\leqslant\mathrm{1}\:\:{and}\:\mid{y}+\mathrm{1}\mid\leqslant\mathrm{3}\:\right\} \\ $$
Commented by math khazana by abdo last updated on 07/May/18
∣y+1∣≤3 ⇔−3≤ y+1≤3 ⇔  −4 ≤y≤4  so  ∫∫_w  (x+y) e^(x−y) dxdy   =∫_(−4) ^4  ( ∫_(−1) ^1 (x+y)e^(x−y) dx)dy but  A(y) = ∫_(−1) ^1  (x+y) e^(x−y) dx =e^(−y)  ∫_(−1) ^1 (x+y) e^x dx  = e^(−y) {  [(x+y)e^x ]_(−1) ^1  −∫_(−1) ^1  e^x dx}  = e^(−y) {  (1+y)e −(−1+y)e^(−1)   −(e −e^(−1) )}  =e(1+y) e^(−y)   +e^(−1) (1−y) e^(−y)  −(e−e^(−1) )e^(−y)   ∫∫_w (x+y)e^(x−y) dxdy   = e∫_(−4) ^4 (1+y)e^(−y) dy  +e^(−1)  ∫_(−4) ^4 (1−y)e^(−y)  −(e−e^(−1) )∫_(−4) ^4  e^(−y) dy  by parts  ∫_(−4) ^4 (1+y)e^(−y) dy =[−(1+y)e^(−y) ]_(−4) ^4  +∫_(−4) ^4  e^(−y) dy  =−3 e^4  −5 e^(−4)   + [ −e^(−y) ]_(−4) ^4   = −3 e^4   −5 e^(−4)   + e^4  −e^(−4)   we follow the?same method for the other integrals  ...
$$\mid{y}+\mathrm{1}\mid\leqslant\mathrm{3}\:\Leftrightarrow−\mathrm{3}\leqslant\:{y}+\mathrm{1}\leqslant\mathrm{3}\:\Leftrightarrow\:\:−\mathrm{4}\:\leqslant{y}\leqslant\mathrm{4}\:\:{so} \\ $$$$\int\int_{{w}} \:\left({x}+{y}\right)\:{e}^{{x}−{y}} {dxdy}\: \\ $$$$=\int_{−\mathrm{4}} ^{\mathrm{4}} \:\left(\:\int_{−\mathrm{1}} ^{\mathrm{1}} \left({x}+{y}\right){e}^{{x}−{y}} {dx}\right){dy}\:{but} \\ $$$${A}\left({y}\right)\:=\:\int_{−\mathrm{1}} ^{\mathrm{1}} \:\left({x}+{y}\right)\:{e}^{{x}−{y}} {dx}\:={e}^{−{y}} \:\int_{−\mathrm{1}} ^{\mathrm{1}} \left({x}+{y}\right)\:{e}^{{x}} {dx} \\ $$$$=\:{e}^{−{y}} \left\{\:\:\left[\left({x}+{y}\right){e}^{{x}} \right]_{−\mathrm{1}} ^{\mathrm{1}} \:−\int_{−\mathrm{1}} ^{\mathrm{1}} \:{e}^{{x}} {dx}\right\} \\ $$$$=\:{e}^{−{y}} \left\{\:\:\left(\mathrm{1}+{y}\right){e}\:−\left(−\mathrm{1}+{y}\right){e}^{−\mathrm{1}} \:\:−\left({e}\:−{e}^{−\mathrm{1}} \right)\right\} \\ $$$$={e}\left(\mathrm{1}+{y}\right)\:{e}^{−{y}} \:\:+{e}^{−\mathrm{1}} \left(\mathrm{1}−{y}\right)\:{e}^{−{y}} \:−\left({e}−{e}^{−\mathrm{1}} \right){e}^{−{y}} \\ $$$$\int\int_{{w}} \left({x}+{y}\right){e}^{{x}−{y}} {dxdy}\: \\ $$$$=\:{e}\int_{−\mathrm{4}} ^{\mathrm{4}} \left(\mathrm{1}+{y}\right){e}^{−{y}} {dy}\:\:+{e}^{−\mathrm{1}} \:\int_{−\mathrm{4}} ^{\mathrm{4}} \left(\mathrm{1}−{y}\right){e}^{−{y}} \:−\left({e}−{e}^{−\mathrm{1}} \right)\int_{−\mathrm{4}} ^{\mathrm{4}} \:{e}^{−{y}} {dy} \\ $$$${by}\:{parts} \\ $$$$\int_{−\mathrm{4}} ^{\mathrm{4}} \left(\mathrm{1}+{y}\right){e}^{−{y}} {dy}\:=\left[−\left(\mathrm{1}+{y}\right){e}^{−{y}} \right]_{−\mathrm{4}} ^{\mathrm{4}} \:+\int_{−\mathrm{4}} ^{\mathrm{4}} \:{e}^{−{y}} {dy} \\ $$$$=−\mathrm{3}\:{e}^{\mathrm{4}} \:−\mathrm{5}\:{e}^{−\mathrm{4}} \:\:+\:\left[\:−{e}^{−{y}} \right]_{−\mathrm{4}} ^{\mathrm{4}} \\ $$$$=\:−\mathrm{3}\:{e}^{\mathrm{4}} \:\:−\mathrm{5}\:{e}^{−\mathrm{4}} \:\:+\:{e}^{\mathrm{4}} \:−{e}^{−\mathrm{4}} \\ $$$${we}\:{follow}\:{the}?{same}\:{method}\:{for}\:{the}\:{other}\:{integrals} \\ $$$$… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *