Menu Close

Calculate-without-using-caculator-a-2-2-sin10-2sin35-sec5-2-cos40-sin5-b-sin6-sin42-sin66-sin78-




Question Number 117046 by 1549442205PVT last updated on 09/Oct/20
Calculate without using caculator:  a)−2(√2)sin10°(2sin35°−((sec5°)/2)−((cos40°)/(sin5°)))  b)sin6°−sin42°−sin66°+sin78°
Calculatewithoutusingcaculator:a)22sin10°(2sin35°sec5°2cos40°sin5°)b)sin6°sin42°sin66°+sin78°
Answered by bemath last updated on 09/Oct/20
(a) −4(√2) sin 35° sin 10°+ (((√2) sin 10°)/(cos 5°)) + ((2(√2) cos 40° sin 10°)/(sin 5°)) =       2(√2) (cos 45°−cos 25°)+2(√2) sin  5°+4(√2) cos 40° cos 5° =       2−2(√2)cos 25°+2(√2) sin  5°+2(√2)(cos 45°+cos 35°)       4−2(√2)cos 25°+2(√2) sin  5° +2(√2) cos 35° =       4−2(√2)cos 25°+2(√2) cos 35°+2(√2) sin  5°=       4+2(√2) (cos 35°−cos 25°)+2(√2) sin  5° =       4+2(√2) (−2sin 30° sin 5°)+2(√2) sin  5°       4−2(√2) sin 5° +2(√2) sin 5° = 4
(a)42sin35°sin10°+2sin10°cos5°+22cos40°sin10°sin5°=22(cos45°cos25°)+22sin5°+42cos40°cos5°=222cos25°+22sin5°+22(cos45°+cos35°)422cos25°+22sin5°+22cos35°=422cos25°+22cos35°+22sin5°=4+22(cos35°cos25°)+22sin5°=4+22(2sin30°sin5°)+22sin5°422sin5°+22sin5°=4
Answered by bobhans last updated on 09/Oct/20
(b)( sin 78°−sin 66°)−(sin 42°−sin 6°) =    2cos 72° sin 6°−(2cos 24°sin 18°)=    2sin 18°sin 6°−2sin 66°sin 18° =   2sin 18° (sin 6°−sin 66°) =   2sin 18°( −2cos 36°sin 30°) =  −2sin 18° cos 36°=  −2((((√5)−1)/4))((((√5)+1)/4))=−(1/2)  ⇒sin 18°= (((√5)−1)/4)  ⇒cos 36° = (((√5)+1)/4)
(b)(sin78°sin66°)(sin42°sin6°)=2cos72°sin6°(2cos24°sin18°)=2sin18°sin6°2sin66°sin18°=2sin18°(sin6°sin66°)=2sin18°(2cos36°sin30°)=2sin18°cos36°=2(514)(5+14)=12sin18°=514cos36°=5+14
Answered by 1549442205PVT last updated on 09/Oct/20
Thank Sirs.  Solution:  a)A=−2(√2) (2sin10sin35−((sin10)/(2cos5))−((sin10cos40)/(sin5)))  =−2(√2)(2sin10sin35−sin5−2cos5cos40)  −2(√2)[cos25−cos45−sin5−(cos45+cos35)]  =−2(√2)[(cos25−cos35)−sin5−2cos45]  =−2(√2)(2sin30sin5−sin5−(√2))  =−2(√2)(2.(1/2)sin5−sin5−(√2))  =−2(√2)(−(√2))=4  b)B=sin6°−sin42°−sin66°+sin78°  =(sin6−sin66)+(sin78−sin42)  =2cos36sin(−30)+(2cos60sin18  =−2.(1/2)cos36+2(1/2)sin18  =sin18−co36=sin18−sin54  =−2cos36sin18=((−2cos36sin18cos18)/(cos18))  =((−cos36sin36)/(sin72))=−(1/2)((sin72)/(sin72))=−(1/2)
ThankSirs.Solution:a)A=22(2sin10sin35sin102cos5sin10cos40sin5)=22(2sin10sin35sin52cos5cos40)22[cos25cos45sin5(cos45+cos35)]=22[(cos25cos35)sin52cos45]=22(2sin30sin5sin52)=22(2.12sin5sin52)=22(2)=4b)B=sin6°sin42°sin66°+sin78°=(sin6sin66)+(sin78sin42)=2cos36sin(30)+(2cos60sin18=2.12cos36+212sin18=sin18co36=sin18sin54=2cos36sin18=2cos36sin18cos18cos18=cos36sin36sin72=12sin72sin72=12

Leave a Reply

Your email address will not be published. Required fields are marked *