Calculate-without-using-caculator-a-2-2-sin10-2sin35-sec5-2-cos40-sin5-b-sin6-sin42-sin66-sin78- Tinku Tara June 4, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 117046 by 1549442205PVT last updated on 09/Oct/20 Calculatewithoutusingcaculator:a)−22sin10°(2sin35°−sec5°2−cos40°sin5°)b)sin6°−sin42°−sin66°+sin78° Answered by bemath last updated on 09/Oct/20 (a)−42sin35°sin10°+2sin10°cos5°+22cos40°sin10°sin5°=22(cos45°−cos25°)+22sin5°+42cos40°cos5°=2−22cos25°+22sin5°+22(cos45°+cos35°)4−22cos25°+22sin5°+22cos35°=4−22cos25°+22cos35°+22sin5°=4+22(cos35°−cos25°)+22sin5°=4+22(−2sin30°sin5°)+22sin5°4−22sin5°+22sin5°=4 Answered by bobhans last updated on 09/Oct/20 (b)(sin78°−sin66°)−(sin42°−sin6°)=2cos72°sin6°−(2cos24°sin18°)=2sin18°sin6°−2sin66°sin18°=2sin18°(sin6°−sin66°)=2sin18°(−2cos36°sin30°)=−2sin18°cos36°=−2(5−14)(5+14)=−12⇒sin18°=5−14⇒cos36°=5+14 Answered by 1549442205PVT last updated on 09/Oct/20 ThankSirs.Solution:a)A=−22(2sin10sin35−sin102cos5−sin10cos40sin5)=−22(2sin10sin35−sin5−2cos5cos40)−22[cos25−cos45−sin5−(cos45+cos35)]=−22[(cos25−cos35)−sin5−2cos45]=−22(2sin30sin5−sin5−2)=−22(2.12sin5−sin5−2)=−22(−2)=4b)B=sin6°−sin42°−sin66°+sin78°=(sin6−sin66)+(sin78−sin42)=2cos36sin(−30)+(2cos60sin18=−2.12cos36+212sin18=sin18−co36=sin18−sin54=−2cos36sin18=−2cos36sin18cos18cos18=−cos36sin36sin72=−12sin72sin72=−12 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-51510Next Next post: Question-182586 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.