Menu Close

calculate-x-2-2y-2-1-x-2-y-2-dxdy-




Question Number 34714 by abdo mathsup 649 cc last updated on 10/May/18
calculate ∫∫_(x^2  +2y^2  ≤1) (x^2  −y^2 )dxdy
calculatex2+2y21(x2y2)dxdy
Commented by math khazana by abdo last updated on 10/May/18
let consider the diffeomorphism  (r,θ)→(x,y)=(rcosθ,(r/( (√2)))sinθ)=(ϕ_1 (r,θ),ϕ_2 (r,θ))  M_j =  ((((∂ϕ_1 /∂r)             (∂ϕ_1 /∂θ))),(((∂ϕ_2 /∂r)                (∂ϕ_2 /∂θ))) )  =  (((cosθ           −rsinθ)),((((sinθ)/( (√2)))               (r/( (√2)))cosθ)) )      and det(M_j )=  (r/( (√2))) cos^2 θ +(r/( (√2))) sin^2 θ = (1/( (√2))) r  I  = ∫∫_(0≤r≤1  ,   −π≤θ≤π) ( r^2 cos^2 θ −(r^2 /2) sin^2 θ)(r/( (√2)))drdθ  I = (1/( (√2))) ∫_0 ^1  r^3 dr ∫_(−π) ^π  cos^2 θ dθ  −(1/(2(√2))) ∫_0 ^1  r^3 dr ∫_(−π) ^π  sin^2 θdθ  = (1/(4(√2))) ∫_(−π) ^π  cos^2 θ dθ  −(1/(8(√2))) ∫_(−π) ^π   sin^2 θ dθ  but  ∫_(−π) ^π  cos^2 θ dθ = 2 ∫_0 ^π   ((1+cos(2θ))/2)dθ   = ∫_0 ^π ( 1+cos(2θ))dθ = π  ∫_(−π) ^π  sin^2 θdθ = 2 ∫_0 ^π  ((1−cos(2θ))/2)dθ   = ∫_0 ^π  (1−cos(2θ))dθ = π ⇒  I = (π/(4(√2)))  −(π/(8(√2)))  = ((2π−π)/(8(√2))) = (π/(8(√2)))  I  = (π/(8(√2))) .
letconsiderthediffeomorphism(r,θ)(x,y)=(rcosθ,r2sinθ)=(φ1(r,θ),φ2(r,θ))Mj=(φ1rφ1θφ2rφ2θ)=(cosθrsinθsinθ2r2cosθ)anddet(Mj)=r2cos2θ+r2sin2θ=12rI=0r1,πθπ(r2cos2θr22sin2θ)r2drdθI=1201r3drππcos2θdθ12201r3drππsin2θdθ=142ππcos2θdθ182ππsin2θdθbutππcos2θdθ=20π1+cos(2θ)2dθ=0π(1+cos(2θ))dθ=πππsin2θdθ=20π1cos(2θ)2dθ=0π(1cos(2θ))dθ=πI=π42π82=2ππ82=π82I=π82.

Leave a Reply

Your email address will not be published. Required fields are marked *