Menu Close

calculate-x-2-cos-4x-x-2-1-2-dx-




Question Number 39119 by math khazana by abdo last updated on 02/Jul/18
calculate  ∫_(−∞) ^(+∞)    ((x^2  cos(4x))/((x^2  +1)^2 ))dx
calculate+x2cos(4x)(x2+1)2dx
Commented by math khazana by abdo last updated on 03/Jul/18
let I = ∫_(−∞) ^(+∞)   ((x^2 cos(4x))/((x^2  +1)^2 ))dx  I = Re( ∫_(−∞) ^(+∞)   ((x^2 e^(i4x) )/((x^(2 ) +1)^2 ))) let ϕ(z)= ((z^2  e^(i4z) )/((z^2  +1)^2 ))  we have ϕ(z)=((z^(2 )  e^(i4z) )/((z−i)^2 (z+i)^2 ))  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ Res(ϕ,i) but  Res(ϕ,i) =lim_(z→i)  {(z−i)^2 ϕ(z)}^((1))   =lim_(z→i)   { ((z^2  e^(i4z) )/((z+i)^2 ))}^((1))   =lim_(z→i)  (((2z e^(i4z)  +4iz^2 e^(i4z) )(z+i)^2  −2(z+i)z^2 e^(i4z) )/((z+i)^4 ))  =lim_(z→i)   (((2z +4iz^2 )e^(i4z) (z+i)−2z^2  e^(i4z) )/((z+i)^3 ))  =(((2i−4i)e^(−4) (2i) +2 e^(−4) )/((2i)^3 )) =((4 e^(−4)  +2e^(−4) )/(−8i))  =((6 e^(−4) )/(−8i)) =i(3/4) e^(−4)  ⇒ ∫_(−∞) ^(+∞)  ϕ(z)dz=2iπ ((3i)/4)e^(−4)   =−((3π)/2) e^(−4)   ⇒ I  = −((3π)/2) e^(−4)   .
letI=+x2cos(4x)(x2+1)2dxI=Re(+x2ei4x(x2+1)2)letφ(z)=z2ei4z(z2+1)2wehaveφ(z)=z2ei4z(zi)2(z+i)2+φ(z)dz=2iπRes(φ,i)butRes(φ,i)=limzi{(zi)2φ(z)}(1)=limzi{z2ei4z(z+i)2}(1)=limzi(2zei4z+4iz2ei4z)(z+i)22(z+i)z2ei4z(z+i)4=limzi(2z+4iz2)ei4z(z+i)2z2ei4z(z+i)3=(2i4i)e4(2i)+2e4(2i)3=4e4+2e48i=6e48i=i34e4+φ(z)dz=2iπ3i4e4=3π2e4I=3π2e4.

Leave a Reply

Your email address will not be published. Required fields are marked *