Menu Close

calculate-x-2-dx-x-2-x-1-3-




Question Number 102165 by mathmax by abdo last updated on 07/Jul/20
calculate ∫_(−∞) ^∞   ((x^2 dx)/((x^2 −x+1)^3 ))
calculatex2dx(x2x+1)3
Answered by MAB last updated on 07/Jul/20
f(z)=(z^2 /((z^2 −z+1)^3 )) has 2 triple poles:   z_1 =e^(i(π/3)) ,z_2 =e^(−i(π/3))   Im(z_2 )<0 and Im(z_1 )>0  ∫_(−∞) ^∞   ((x^2 dx)/((x^2 −x+1)^3 ))=2πi.Res(f(z),z_1 )  =2πi.(1/((3−1)!))((z^2 /((z−z_2 )^3 )))_(z=z_1 ) ^((2))   =((2π)/(3(√3)))  finally   ∫_(−∞) ^∞   ((x^2 dx)/((x^2 −x+1)^3 ))=((2π)/(3(√3)))
f(z)=z2(z2z+1)3has2triplepoles:z1=eiπ3,z2=eiπ3Im(z2)<0andIm(z1)>0x2dx(x2x+1)3=2πi.Res(f(z),z1)=2πi.1(31)!(z2(zz2)3)z=z1(2)=2π33finallyx2dx(x2x+1)3=2π33
Answered by mathmax by abdo last updated on 07/Jul/20
I =∫_(−∞) ^(+∞)  ((x^2  dx)/((x^2 −x+1)^3 ))  let ϕ(z) =(z^2 /((z^2 −z+1)^3 ))  pole of ϕ  z^2 −z+1 =0 →Δ =−3 ⇒z_1 =((1+i(√3))/2) =e^((iπ)/3)  and z_2 =((1−i(√3))/2) =e^(−((iπ)/3))  ⇒ϕ(z) =(z^2 /((z−z_1 )^3 (z−z_2 )^3 ))  the poles of ϕ are  e^((iπ)/3)  and e^(−((iπ)/3) ) (triples)  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,e^((iπ)/3) ) and   Res(ϕ,e^((iπ)/3) ) =lim_(z→e^((iπ)/3) )   (1/((3−1)!)){(z−e^((iπ)/3) )^3  ϕ(z)}^((2))   =(1/2)lim_(z→e^((iπ)/3) )     {(z^2 /((z−e^(−((iπ)/3)) )^3 ))}^((2))   =lim_(z→e^((iπ)/3) )    {((2z(z−e^(−((iπ)/3)) )^3 −3(z−e^(−((iπ)/3)) )^2 z^2 )/((z−e^(−((iπ)/3)) )^6 ))}^((1))   =lim_(z→e^((iπ)/3)  )    { ((2z(z−e^(−((iπ)/3)) )−3z^2 )/((z−e^(−((iπ)/3)) )^4 ))}^((1))   =lim_(z→e^((iπ)/3) )    {((−z^2 −2z e^(−((iπ)/3)) )/((z−e^(−((iπ)/3)) )^4 ))}^((1))   −lim_(z→e^((iπ)/3) )    (((2z+2e^(−((iπ)/3)) )(z−e^(−((iπ)/3)) )^4  −4(z−e^(−((iπ)/3)) )^3 (z^2  +2z e^(−((iπ)/3)) ))/((z−e^(−((iπ)/3)) )^8 ))  =−lim_(z→e^((iπ)/3) )   (((2z+2e^(−((iπ)/3)) )(z−e^(−((iπ)/3)) )−4(z^2  +2z e^(−((iπ)/3)) ))/((z−e^(−((iπ)/3)) )^5 ))  =−   ((4cos((π/3))2isin((π/3))−4{e^((2iπ)/3)  +2})/((2isin((π/3)))^5 ))  =−((8×(1/2)×((√3)/2)i−8 −4e^((i2π)/3) )/(32i(((√3)/2))^5 )) =((2(√3)i −8 −4(−(1/2)+((i(√3))/2)))/(32i(((√3)/2))^5 ))  =(6/(32i((√3))^5 ))×(2^5 /( (√3))) =(6/(i((√3))^6 )) =(6/(3^3 i)) =(2/(9i)) ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ×(2/(9i)) =((4π)/9) ⇒  I =((4π)/9)
I=+x2dx(x2x+1)3letφ(z)=z2(z2z+1)3poleofφz2z+1=0Δ=3z1=1+i32=eiπ3andz2=1i32=eiπ3φ(z)=z2(zz1)3(zz2)3thepolesofφareeiπ3andeiπ3(triples)residustheoremgive+φ(z)dz=2iπRes(φ,eiπ3)andRes(φ,eiπ3)=limzeiπ31(31)!{(zeiπ3)3φ(z)}(2)=12limzeiπ3{z2(zeiπ3)3}(2)=limzeiπ3{2z(zeiπ3)33(zeiπ3)2z2(zeiπ3)6}(1)=limzeiπ3{2z(zeiπ3)3z2(zeiπ3)4}(1)=limzeiπ3{z22zeiπ3(zeiπ3)4}(1)limzeiπ3(2z+2eiπ3)(zeiπ3)44(zeiπ3)3(z2+2zeiπ3)(zeiπ3)8=limzeiπ3(2z+2eiπ3)(zeiπ3)4(z2+2zeiπ3)(zeiπ3)5=4cos(π3)2isin(π3)4{e2iπ3+2}(2isin(π3))5=8×12×32i84ei2π332i(32)5=23i84(12+i32)32i(32)5=632i(3)5×253=6i(3)6=633i=29i+φ(z)dz=2iπ×29i=4π9I=4π9
Commented by mathmax by abdo last updated on 07/Jul/20
error at final line Res(ϕ,e^((iπ)/3) ) =(1/(2i))×(6/(32(((√3)/2))^5 i)) =((3×2^5 )/(32i×((√3))^5 )) =(1/(i((√3))^3 )) =(1/(3(√3)i))  ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =((2iπ)/(3(√3)i)) =((2π)/(3(√3))) ⇒★ I =((2π)/(3(√3))) ★
erroratfinallineRes(φ,eiπ3)=12i×632(32)5i=3×2532i×(3)5=1i(3)3=133i+φ(z)dz=2iπ33i=2π33I=2π33
Commented by MAB last updated on 07/Jul/20
exact sir
exactsir

Leave a Reply

Your email address will not be published. Required fields are marked *