Question Number 117253 by mathmax by abdo last updated on 10/Oct/20

Answered by mnjuly1970 last updated on 10/Oct/20
![=∫_(−∞) ^( +∞) ((x^2 −x+1+x−1)/((x^2 −x+1)^2 ))dx =∫_(−∞) ^( +∞) (1/(x^2 −x+1))dx +(1/2)∫_(−∞) ^( +∞) ((2x−1−1)/((x^2 −x+1)^2 ))dx ({∫_(−∞) ^( +∞) (1/((x−(1/2))^2 +(((√3)/2))^2 ))dx}=k_1 ) −([(1/(2(x^2 −x+1)))]_(−∞) ^( ∞) =k_2 )−(1/2){∫_(−∞) ^( +∞) (1/((x^2 −x+1)^2 ))dx}=k_3 k_1 =((2π)/( (√3))) , k_2 =0 k_3 =∫_(−∞) ^( +∞) (1/((x^2 −x+1)^2 ))dx Λ(b)=∫_(−∞) ^( +∞) (1/(x^2 −x+b))dx=∫_(−∞) ^( +∞) (1/((x−(1/2))^2 +(((√(4b−1))/2))^2 )) =((2π)/( (√(4b−1)))) k_3 =−Λ^′ (b)∣_(b=1) =−2π(((−1)/2))(4)(4b−1)^(−(3/2)) ∣_(b=1) =(4π)(1/( 3(√3))) ∴ ∫_(−∞) ^( +∞) (x^2 /((x^2 −x+1)^2 ))dx=((2π)/( (√3)))−((2π)/(3(√3)))=((4π)/( 3(√3))) ....m.n.july.1970...](https://www.tinkutara.com/question/Q117261.png)
Answered by Bird last updated on 10/Oct/20

Answered by 1549442205PVT last updated on 11/Oct/20
![(x^2 /((x^2 −x +1)^2 ))≡ ((ax+b)/((x^2 −x +1)))+ ((cx^2 +dx+e)/(x^4 −2x^3 +3x^2 −2x+1)) ⇔x^2 ≡ax^5 +(c−2a)x^4 +(3a−2b−c+d)x^3 +(3b−2a+c−d+e)x^2 + +(a−2b+d−e)x+b+e ⇔ { ((a=0)),((c−2a=0)),((3a−2b−c+d=0)),((−2a+3b+c−d+e=1)),((a−2b+d−e=0)),((b+e=0)) :} ⇔ { ((a=0)),((b=2/3=d)),((e=−2/3)),((c=1/3)) :} Hence,∫_(−∞) ^∞ (x^2 /((x^2 −x +1)^2 ))dx =(2/3)∫_(−∞) ^(+∞) (dx/(x^2 −x+1))+(1/3)∫_(−∞) ^(+∞) ((x^2 +2x−2)/((x^2 −x+1)^2 ))dx Put F=∫((x^2 +2x−2)/((x^2 −x+1)^2 ))dx.We will find F in form:F(x)=((ax^2 +bx+c)/(x^2 −x+1))+C ⇔ ((x^2 +2x−2)/(2(x^2 −x +1)^2 ))≡F′(x)=(((ax^2 +bx+c)/(x^2 −x+1)))′ =(((2ax+b)(x^2 −x+1)−(ax^2 +bx+c)(2x−1))/((x^2 −x+1)^2 )) ={2ax^3 +(b−2a)x^2 +(2a−b)x+b −[2ax^3 +(2b−a)x^2 +(2c−b)x−c]}/(x^2 −x+1)^2 =(((−a−b)x^2 +(2a−2c)x+b+c)/((x^2 −x+1)^2 )) ⇔ { ((−a−b=1)),((2a−2c=2)),((b+c=−2)) :}⇔ { ((−2b−2c=4)),((b+c=−2)) :} ⇒b=−2−c a=−b−1=1+c ⇒F(x)=(((1+c)x^2 −(2+c)x+c)/(x^2 −x+1)) =((−x−1)/(x^2 −x+1))+c+1(1).We have (2/3)∫(dx/(x^2 −x+1))=(2/3)∫(dx/((x−(1/2))^2 +(((√3)/2))^2 )) =(2/3)×(2/( (√3)))tan^(−1) (((2x−1)/( (√3))))(2)(since ∫(dx/(x^2 +a^2 ))=tan^(−1) ((x/a))) From (1)(2) and (c+1) as a constant We get: I= ∫_(−∞) ^∞ (x^2 /((x^2 −x +1)^2 ))dx =[(4/(3(√3)))tan^(−1) (((2x−1)/( (√3))))−(1/3).((x+1)/(x^2 −x+1))]_(−∞) ^(+∞) =((4(√3))/9)×(π/2)×2=((4π(√3))/9)](https://www.tinkutara.com/question/Q117317.png)
Commented by 1549442205PVT last updated on 11/Oct/20

Commented by mathmax by abdo last updated on 11/Oct/20
