Menu Close

calculate-x-2-x-2-x-1-2-dx-




Question Number 117253 by mathmax by abdo last updated on 10/Oct/20
calculate ∫_(−∞) ^∞   (x^2 /((x^2 −x +1)^2 ))dx
calculatex2(x2x+1)2dx
Answered by mnjuly1970 last updated on 10/Oct/20
=∫_(−∞) ^( +∞) ((x^2 −x+1+x−1)/((x^2 −x+1)^2 ))dx  =∫_(−∞) ^( +∞) (1/(x^2 −x+1))dx +(1/2)∫_(−∞) ^( +∞) ((2x−1−1)/((x^2 −x+1)^2 ))dx  ({∫_(−∞) ^( +∞) (1/((x−(1/2))^2 +(((√3)/2))^2 ))dx}=k_1 ) −([(1/(2(x^2 −x+1)))]_(−∞) ^( ∞) =k_2 )−(1/2){∫_(−∞) ^( +∞) (1/((x^2 −x+1)^2 ))dx}=k_3   k_1 =((2π)/( (√3))) , k_2 =0  k_3 =∫_(−∞) ^( +∞) (1/((x^2 −x+1)^2 ))dx   Λ(b)=∫_(−∞) ^( +∞) (1/(x^2 −x+b))dx=∫_(−∞) ^( +∞) (1/((x−(1/2))^2 +(((√(4b−1))/2))^2 ))  =((2π)/( (√(4b−1))))   k_3 =−Λ^′ (b)∣_(b=1) =−2π(((−1)/2))(4)(4b−1)^(−(3/2)) ∣_(b=1) =(4π)(1/( 3(√3)))  ∴ ∫_(−∞) ^( +∞) (x^2 /((x^2 −x+1)^2 ))dx=((2π)/( (√3)))−((2π)/(3(√3)))=((4π)/( 3(√3)))                ....m.n.july.1970...
=+x2x+1+x1(x2x+1)2dx=+1x2x+1dx+12+2x11(x2x+1)2dx({+1(x12)2+(32)2dx}=k1)([12(x2x+1)]=k2)12{+1(x2x+1)2dx}=k3k1=2π3,k2=0k3=+1(x2x+1)2dxΛ(b)=+1x2x+bdx=+1(x12)2+(4b12)2=2π4b1k3=Λ(b)b=1=2π(12)(4)(4b1)32b=1=(4π)133+x2(x2x+1)2dx=2π32π33=4π33.m.n.july.1970
Answered by Bird last updated on 10/Oct/20
let I =∫_(−∞) ^(+∞)  (x^2 /((x^2 −x+1)^2 ))dx and  ϕ(z) =(z^2 /((z^2 −z+1)^2 )) poles of ϕ!  z^2 −z+1=0 →Δ=−3⇒z_1 =((1+i(√3))/2)=e^((iπ)/3)   z_2 =((1−i(√3))/2) =e^(−((iπ)/3))  ⇒ϕ(z)=(z^2 /((z−e^((iπ)/3) )^2 (z−e^(−((iπ)/3)) )^2 ))  the poles of ϕ are e^((iπ)/3)  and e^(−((iπ)/3)) (doubles)  residus theorem give  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ Res(ϕ,e^((iπ)/3) )  Res(ϕ,e^((iπ)/3) )=lim_(z→e^((iπ)/3) )  (1/((2−1)!)){(z−e^((iπ)/3) )^2 ϕ(z)}^((1))   =lim_(z→e^((iπ)/3) )    {(z^2 /((z−e^(−((iπ)/3)) )^2 ))}^((1))   =lim_(z→e^((iπ)/3) )   ((2z (z−e^(−((iπ)/3)) )^2 −2(z−e^(−((iπ)/3)) )z^2 )/((z−e^(−((iπ)/3)) )^4 ))  =2lim_(z→e^((iπ)/3) )   ((z(z−e^(−((iπ)/3)) )−z^2 )/((z−e^(−((iπ)/3)) )^3 ))  =−2 lim_(z→e^((iπ)/3) )    ((ze^(−((iπ)/3)) )/((z−e^(−((iπ)/3)) )^3 ))  =−2  ×(1/((2isin((π/3)))^3 ))  =((−2)/(−8i (((√3)/2))^3 )) =(1/(4i(((3(√3))/8)))) =(2/(3i(√3))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ.(2/(3i(√3))) =((4π)/(3(√3)))  ⇒  I =((4π)/(3(√3)))
letI=+x2(x2x+1)2dxandφ(z)=z2(z2z+1)2polesofφ!z2z+1=0Δ=3z1=1+i32=eiπ3z2=1i32=eiπ3φ(z)=z2(zeiπ3)2(zeiπ3)2thepolesofφareeiπ3andeiπ3(doubles)residustheoremgive+φ(z)dz=2iπRes(φ,eiπ3)Res(φ,eiπ3)=limzeiπ31(21)!{(zeiπ3)2φ(z)}(1)=limzeiπ3{z2(zeiπ3)2}(1)=limzeiπ32z(zeiπ3)22(zeiπ3)z2(zeiπ3)4=2limzeiπ3z(zeiπ3)z2(zeiπ3)3=2limzeiπ3zeiπ3(zeiπ3)3=2×1(2isin(π3))3=28i(32)3=14i(338)=23i3+φ(z)dz=2iπ.23i3=4π33I=4π33
Answered by 1549442205PVT last updated on 11/Oct/20
  (x^2 /((x^2 −x +1)^2 ))≡  ((ax+b)/((x^2 −x +1)))+ ((cx^2 +dx+e)/(x^4 −2x^3 +3x^2 −2x+1))  ⇔x^2 ≡ax^5 +(c−2a)x^4 +(3a−2b−c+d)x^3   +(3b−2a+c−d+e)x^2 +  +(a−2b+d−e)x+b+e  ⇔ { ((a=0)),((c−2a=0)),((3a−2b−c+d=0)),((−2a+3b+c−d+e=1)),((a−2b+d−e=0)),((b+e=0)) :}  ⇔ { ((a=0)),((b=2/3=d)),((e=−2/3)),((c=1/3)) :}  Hence,∫_(−∞) ^∞   (x^2 /((x^2 −x +1)^2 ))dx  =(2/3)∫_(−∞) ^(+∞) (dx/(x^2 −x+1))+(1/3)∫_(−∞) ^(+∞) ((x^2 +2x−2)/((x^2 −x+1)^2 ))dx  Put F=∫((x^2 +2x−2)/((x^2 −x+1)^2 ))dx.We will find F  in form:F(x)=((ax^2 +bx+c)/(x^2 −x+1))+C  ⇔ ((x^2 +2x−2)/(2(x^2 −x +1)^2 ))≡F′(x)=(((ax^2 +bx+c)/(x^2 −x+1)))′  =(((2ax+b)(x^2 −x+1)−(ax^2 +bx+c)(2x−1))/((x^2 −x+1)^2 ))  ={2ax^3 +(b−2a)x^2 +(2a−b)x+b  −[2ax^3 +(2b−a)x^2 +(2c−b)x−c]}/(x^2 −x+1)^2   =(((−a−b)x^2 +(2a−2c)x+b+c)/((x^2 −x+1)^2 ))  ⇔ { ((−a−b=1)),((2a−2c=2)),((b+c=−2)) :}⇔ { ((−2b−2c=4)),((b+c=−2)) :}  ⇒b=−2−c  a=−b−1=1+c  ⇒F(x)=(((1+c)x^2 −(2+c)x+c)/(x^2 −x+1))  =((−x−1)/(x^2 −x+1))+c+1(1).We have  (2/3)∫(dx/(x^2 −x+1))=(2/3)∫(dx/((x−(1/2))^2 +(((√3)/2))^2 ))  =(2/3)×(2/( (√3)))tan^(−1) (((2x−1)/( (√3))))(2)(since ∫(dx/(x^2 +a^2 ))=tan^(−1) ((x/a)))  From (1)(2) and (c+1) as a constant  We get: I= ∫_(−∞) ^∞   (x^2 /((x^2 −x +1)^2 ))dx  =[(4/(3(√3)))tan^(−1) (((2x−1)/( (√3))))−(1/3).((x+1)/(x^2 −x+1))]_(−∞) ^(+∞)   =((4(√3))/9)×(π/2)×2=((4π(√3))/9)
x2(x2x+1)2ax+b(x2x+1)+cx2+dx+ex42x3+3x22x+1x2ax5+(c2a)x4+(3a2bc+d)x3+(3b2a+cd+e)x2++(a2b+de)x+b+e{a=0c2a=03a2bc+d=02a+3b+cd+e=1a2b+de=0b+e=0{a=0b=2/3=de=2/3c=1/3Hence,x2(x2x+1)2dx=23+dxx2x+1+13+x2+2x2(x2x+1)2dxPutF=x2+2x2(x2x+1)2dx.WewillfindFinform:F(x)=ax2+bx+cx2x+1+Cx2+2x22(x2x+1)2F(x)=(ax2+bx+cx2x+1)=(2ax+b)(x2x+1)(ax2+bx+c)(2x1)(x2x+1)2={2ax3+(b2a)x2+(2ab)x+b[2ax3+(2ba)x2+(2cb)xc]}/(x2x+1)2=(ab)x2+(2a2c)x+b+c(x2x+1)2{ab=12a2c=2b+c=2{2b2c=4b+c=2b=2ca=b1=1+cF(x)=(1+c)x2(2+c)x+cx2x+1=x1x2x+1+c+1(1).Wehave23dxx2x+1=23dx(x12)2+(32)2=23×23tan1(2x13)(2)(sincedxx2+a2=tan1(xa))From(1)(2)and(c+1)asaconstantWeget:I=x2(x2x+1)2dx=[433tan1(2x13)13.x+1x2x+1]+=439×π2×2=4π39
Commented by 1549442205PVT last updated on 11/Oct/20
Thank Prof.You are welcome.
ThankProf.Youarewelcome.
Commented by mathmax by abdo last updated on 11/Oct/20
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *