Menu Close

calculate-x-2-y-2-1-dxdy-3-x-2-y-2-




Question Number 28158 by abdo imad last updated on 21/Jan/18
calculate ∫∫_(x^2 +y^2 ≤1)    ((dxdy)/(3+x^2 +y^2 ))  .
$${calculate}\:\int\int_{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant\mathrm{1}} \:\:\:\frac{{dxdy}}{\mathrm{3}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:\:. \\ $$
Answered by ajfour last updated on 21/Jan/18
x^2 +y^2 =r^2    dxdy=rdrdθ      ⇒ I=∫_0 ^(  2π) [∫_0 ^(  1) (((rdr)/(3+r^2 )))dθ     =πln ((4/3)) .
$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\:{dxdy}={rdrd}\theta\:\:\:\: \\ $$$$\Rightarrow\:{I}=\int_{\mathrm{0}} ^{\:\:\mathrm{2}\pi} \left[\int_{\mathrm{0}} ^{\:\:\mathrm{1}} \left(\frac{{rdr}}{\mathrm{3}+{r}^{\mathrm{2}} }\right){d}\theta\right. \\ $$$$\:\:\:=\pi\mathrm{ln}\:\left(\frac{\mathrm{4}}{\mathrm{3}}\right)\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *