Menu Close

calculate-x-3-2-x-dx-




Question Number 63720 by mathmax by abdo last updated on 08/Jul/19
calculate ∫(√((x−3)(2−x)))dx
calculate(x3)(2x)dx
Commented by Prithwish sen last updated on 08/Jul/19
∫(√(−x^2 +5x −6)) dx  = ∫(√(((1/2))^2 −(x−(5/2))^2 )) dx
x2+5x6dx=(12)2(x52)2dx
Commented by mathmax by abdo last updated on 08/Jul/19
we have (x−3)(2−x) =2x−x^2 −6+3x =−x^2  +5x−6  =−(x^2 −5x+6) =−{ x^2 −2(5/2)x +((25)/4) +6−((25)/4)}  =−{(x−(5/2))^2  −(1/4)}=(1/4)−(x−(5/2))^2  let use the changement  x−(5/2) =((sint)/2) ⇒  ∫(√((x−3)(2−x)))dx =∫(1/2)(√(1−sin^2 t))((cost)/2)dt  =(1/4) ∫  cos^2 t dt =(1/4) ∫((1+cos(2t))/2)dt =(1/8) ∫(1+cos(2t))dt  =(t/8) +(1/(16))sin(2t) +c =(t/8) +(1/8)sint cost +c  =arcsin(2x−5) +(1/8)(2x−5)(√(1−(2x−5)^2 )) +c .
wehave(x3)(2x)=2xx26+3x=x2+5x6=(x25x+6)={x2252x+254+6254}={(x52)214}=14(x52)2letusethechangementx52=sint2(x3)(2x)dx=121sin2tcost2dt=14cos2tdt=141+cos(2t)2dt=18(1+cos(2t))dt=t8+116sin(2t)+c=t8+18sintcost+c=arcsin(2x5)+18(2x5)1(2x5)2+c.
Answered by MJS last updated on 08/Jul/19
∫(√((x−3)(2−x)))dx=       [t=arccos (2x−5) → dx=−(√((x−3)(2−x)))dt]  =−(1/4)∫sin^2  t dt=−(1/8)∫dt+(1/8)∫cos 2t dt=  =−(1/8)t+(1/(16))sin 2t =−(1/8)t+(1/8)sin t cos t =  =−(1/8)arccos (2x−5) +(1/4)(2x−5)(√((x−3)(2−x)))+C
(x3)(2x)dx=[t=arccos(2x5)dx=(x3)(2x)dt]=14sin2tdt=18dt+18cos2tdt==18t+116sin2t=18t+18sintcost==18arccos(2x5)+14(2x5)(x3)(2x)+C

Leave a Reply

Your email address will not be published. Required fields are marked *