calculate-x-3-x-2-x-2-x-1-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 62207 by maxmathsup by imad last updated on 17/Jun/19 calculate∫x+3(x−2)x2+x+1dx Commented by maxmathsup by imad last updated on 18/Jun/19 I=∫x−2+5(x−2)x2+x+1dx=∫dxx2+x+1+5∫dx(x−2)x2+x+1=H+5Kwehavex2+x+1=(x+12)2+34soweusethechang.x+12=32t⇒H=∫32321+t2dt=∫dt1+t2=ln(t+1+t2)+c1=H=ln(2x+13+1+(2x+13)2)+c1K=∫1(3t2−12−2)321+t232dt=∫dt(32t−52)1+t2dt=2∫dt(3t−5)1+t2=t=sh(u)2∫ch(u)du(3sh(u)−5)ch(u)=2∫du3sh(u)−5=2∫du3eu−e−u2−5=4∫du3(eu−e−u)−10=eu=α4∫13α−3α−1−10dαα=4∫dα3α2−3−10α=4∫dα3α2−10α−3Δ′=(−5)2+3=25+3=28⇒α1=5+283andα2=5−283⇒∫dα3α2−10α−3=∫dα3(α−α1)(α−α2)=13(2283)∫(1α−α1−1α−α2)dα=147ln∣α−α1α−α2∣+c2⇒K=17ln∣eu−α1eu−α2∣+c2butu=argsh(t)=ln(t+1+t2)⇒eu=t+1+t2K=17ln∣t+1+t2−α1t+1+t2−α2∣+c2butt=2x+13⇒K=17ln∣2x+13+1+(2x+13)2−α12x+13+1+(2x+13)2−α2∣+c2I=H+5Kisnown. Answered by tanmay last updated on 17/Jun/19 ∫x−2+5(x−2)x2+x+1dx∫dxx2+x+1+5∫dx(x−2)x2+x+1I1+5I2I1=∫dxx2+2×x×12+14+34=∫dx(x+12)2+(32)2=ln[(x+12)+(x+12)2+(32)2]+c1I2=∫dx(x−2)x2+x+1x−2=1t→dx=−dtt2∫−dtt2×1t×(1t+2)2+(1t+2)+1∫−dtt×1t2+4t+4+1t+3∫−dtt×1+4t+4t2+t+3t2t2∫−dt7t2+5t+117∫−dtt2+2×t×514+(514)2+17−2519617∫−dt(t+514)2+28−2519617∫−dt(t+514)2+3196−17×ln[(t+514)+(t+514)2+3196]=−17×ln[(1x−2+514)+(1x−2+514)2+3196)]nowplscaculateI1+5I2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: study-the-convergence-of-n-0-1-n-n-2-2-n-2-1-Next Next post: xdx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.