Menu Close

calculate-x-3-x-2-x-2-x-1-dx-




Question Number 62207 by maxmathsup by imad last updated on 17/Jun/19
calculate ∫      ((x+3)/((x−2)(√(x^2 +x+1)))) dx
calculatex+3(x2)x2+x+1dx
Commented by maxmathsup by imad last updated on 18/Jun/19
I =∫ ((x−2 +5)/((x−2)(√(x^2 +x+1))))dx =∫ (dx/( (√(x^2 +x+1)))) +5∫ (dx/((x−2)(√(x^2 +x+1)))) =H +5K  we have x^2 +x+1 =(x+(1/2))^2  +(3/4) so we use the chang.x+(1/2) =((√3)/2)t ⇒  H =∫     ((√3)/(2((√3)/2)(√(1+t^2 )))) dt =∫  (dt/( (√(1+t^2 ))))=ln(t+(√(1+t^2 ))) +c_1  =  H =ln(((2x+1)/( (√3))) +(√(1+(((2x+1)/( (√3))))^2 ))) +c_1   K =∫   (1/(((((√3)t)/2)−(1/2)−2)((√3)/2)(√(1+t^2 )))) ((√3)/2)dt = ∫      (dt/((((√3)/2)t−(5/2))(√(1+t^2 ))))dt  =2 ∫   (dt/(((√3) t−5)(√(1+t^2 )))) =_(t =sh(u))    2 ∫   ((ch(u)du)/(((√3)sh(u)−5)ch(u)))  =2 ∫  (du/( (√3)sh(u)−5)) =2 ∫  (du/( (√3)((e^u −e^(−u) )/2)−5)) =4 ∫  (du/( (√3)(e^u −e^(−u) )−10))  =_(e^u  =α)      4 ∫    (1/( (√3)α −(√3)α^(−1) −10)) (dα/α) =4 ∫   (dα/( (√3)α^2 −(√3)−10 α)) =4 ∫  (dα/( (√3)α^2 −10α−(√3)))  Δ^′  =(−5)^2 +3 =25 +3 =28 ⇒α_1 =((5+(√(28)))/( (√3))) and α_2 =((5−(√(28)))/( (√3))) ⇒  ∫  (dα/( (√3)α^2 −10α −(√3))) =∫  (dα/( (√3)(α−α_1 )(α−α_2 )))  =(1/( (√3)(2((√(28))/( (√3)))))) ∫ ((1/(α−α_1 )) −(1/(α−α_2 )))dα =(1/(4(√7)))ln∣((α−α_1 )/(α−α_2 ))∣ +c_2  ⇒  K =(1/( (√7)))ln∣((e^u −α_1 )/(e^u −α_2 ))∣ +c_2    but  u =argsh(t) =ln(t+(√(1+t^2 ))) ⇒e^u  =t+(√(1+t^2 ))  K =(1/( (√7)))ln∣((t+(√(1+t^2 ))−α_1 )/(t+(√(1+t^2  −α_2 ))))∣ +c_2   but t =((2x+1)/( (√3))) ⇒  K =(1/( (√7)))ln∣((((2x+1)/( (√3)))+(√(1+(((2x+1)/( (√3))))^2 ))−α_1 )/(((2x+1)/( (√3))) +(√(1+(((2x+1)/( (√3))))^2 ))−α_2 ))∣ +c_2   I =H +5K  is nown .
I=x2+5(x2)x2+x+1dx=dxx2+x+1+5dx(x2)x2+x+1=H+5Kwehavex2+x+1=(x+12)2+34soweusethechang.x+12=32tH=32321+t2dt=dt1+t2=ln(t+1+t2)+c1=H=ln(2x+13+1+(2x+13)2)+c1K=1(3t2122)321+t232dt=dt(32t52)1+t2dt=2dt(3t5)1+t2=t=sh(u)2ch(u)du(3sh(u)5)ch(u)=2du3sh(u)5=2du3eueu25=4du3(eueu)10=eu=α413α3α110dαα=4dα3α2310α=4dα3α210α3Δ=(5)2+3=25+3=28α1=5+283andα2=5283dα3α210α3=dα3(αα1)(αα2)=13(2283)(1αα11αα2)dα=147lnαα1αα2+c2K=17lneuα1euα2+c2butu=argsh(t)=ln(t+1+t2)eu=t+1+t2K=17lnt+1+t2α1t+1+t2α2+c2butt=2x+13K=17ln2x+13+1+(2x+13)2α12x+13+1+(2x+13)2α2+c2I=H+5Kisnown.
Answered by tanmay last updated on 17/Jun/19
∫((x−2+5)/((x−2)(√(x^2 +x+1))))dx  ∫(dx/( (√(x^2 +x+1))))+5∫(dx/((x−2)(√(x^2 +x+1))))  I_1 +5I_2   I_1 =∫(dx/( (√(x^2 +2×x×(1/2)+(1/4)+(3/4)))))  =∫(dx/( (√((x+(1/2))^2 +(((√3)/2))^2  ))))  =ln[(x+(1/2))+(√((x+(1/2))^2 +(((√3)/2))^2 ))  ] +c_1   I_2 =∫(dx/((x−2)(√(x^2 +x+1))))  x−2=(1/t)→dx=((−dt)/t^2 )  ∫((−dt)/(t^2 ×(1/t)×(√(((1/t)+2)^2 +((1/t)+2)+1))))  ∫((−dt)/(t×(√((1/t^2 )+(4/t)+4+(1/t)+3))))  ∫((−dt)/(t×(√((1+4t+4t^2 +t+3t^2 )/t^2 ))))  ∫((−dt)/( (√(7t^2 +5t+1))))  (1/( (√7)))∫((−dt)/( (√(t^2 +2×t×(5/(14))+((5/(14)))^2 +(1/7)−((25)/(196))))))  (1/( (√7)))∫((−dt)/( (√((t+(5/(14)))^2 +((28−25)/(196))))))  (1/( (√7)))∫((−dt)/( (√((t+(5/(14)))^2 +(3/(196))))))  ((−1)/( (√7)))×ln[(t+(5/(14)))+(√((t+(5/(14)))^2 +(3/(196)))) ]  =((−1)/( (√7)))×ln[((1/(x−2))+(5/(14)))+(√(((1/(x−2))+(5/(14)))^2 +(3/(196)))) )]  now pls caculate I_1 +5I_2
x2+5(x2)x2+x+1dxdxx2+x+1+5dx(x2)x2+x+1I1+5I2I1=dxx2+2×x×12+14+34=dx(x+12)2+(32)2=ln[(x+12)+(x+12)2+(32)2]+c1I2=dx(x2)x2+x+1x2=1tdx=dtt2dtt2×1t×(1t+2)2+(1t+2)+1dtt×1t2+4t+4+1t+3dtt×1+4t+4t2+t+3t2t2dt7t2+5t+117dtt2+2×t×514+(514)2+172519617dt(t+514)2+282519617dt(t+514)2+319617×ln[(t+514)+(t+514)2+3196]=17×ln[(1x2+514)+(1x2+514)2+3196)]nowplscaculateI1+5I2

Leave a Reply

Your email address will not be published. Required fields are marked *