Menu Close

calculate-x-4-x-8-16-dx-




Question Number 42695 by prof Abdo imad last updated on 31/Aug/18
calculate  ∫_(−∞) ^(+∞)     (x^4 /(x^(8 )  +16))dx
calculate+x4x8+16dx
Commented by maxmathsup by imad last updated on 01/Sep/18
let A  =  ∫_(−∞) ^(+∞)    (x^4 /(x^8  +16))dx ⇒ A = 2 ∫_0 ^∞  (x^4 /(x^8   +((√2))^8 ))   changement x=t(√2)give  A  = 2 ∫_0 ^∞     ((4t^4 )/(16t^8  +16))dt =(1/2) ∫_0 ^∞     (t^4 /(1+t^8 ))dt   =_(t =u^(1/8) )         (1/2)   ∫_0 ^∞        (u^(1/2) /(1+u)) (1/8) u^((1/8)−1) du = (1/(16)) ∫_0 ^∞     (u^((1/2)+(1/8)−1) /(1+u))du  =(1/(16))  ∫_0 ^∞      (u^((5/8)−1) /(1+u))du =(1/(16))  (π/(sin(((5π)/8))))   but  sin(((5π)/8)) =sin((π/2)+(π/8))=cos((π/8))=((√(2+(√2)))/2)  ⇒ A  =(π/(16)) ((√(2+(√2)))/2) ⇒ A  =((π(√(2+(√2))))/(32)) .
letA=+x4x8+16dxA=20x4x8+(2)8changementx=t2giveA=204t416t8+16dt=120t41+t8dt=t=u18120u121+u18u181du=1160u12+1811+udu=1160u5811+udu=116πsin(5π8)butsin(5π8)=sin(π2+π8)=cos(π8)=2+22A=π162+22A=π2+232.

Leave a Reply

Your email address will not be published. Required fields are marked *