Menu Close

calculate-x-n-1-x-2-n-dx-with-n-natral-integr-




Question Number 39711 by math khazana by abdo last updated on 10/Jul/18
calculate  ∫_(−∞) ^(+∞)    (x^n /((1+x^2 )^n )) dx with n natral integr
calculate+xn(1+x2)ndxwithnnatralintegr
Commented by maxmathsup by imad last updated on 11/Jul/18
let A_n = ∫_(−∞) ^(+∞)     ((x^n dx)/((1+x^2 )^n ))    and let ϕ(z)=(z^n /((1+z^2 )^n ))  ϕ(z) = (z^n /((z−i)^n (z+i)^n ))  ∫_(−∞) ^(+∞)  ϕ(z)dz=2iπ Res(ϕ,i)  but  Res(ϕ,i)=lim_(z→i)   (1/((n−1)!)){(z−i)^n ϕ(z)}^((n−1))   =lim_(z→i)    (1/((n−1)!))  {  x^n (z+i)^(−n) }^((n−1))   and  { x^n (z+i)^(−n) }^((n−1)) =Σ_(k=0) ^(n−1)   C_(n−1) ^k  {(z+i)^(−n) }^((k))   (x^n )^((n−1−k))   but  (z+i)^(−n) }^((k)) =(−1)^k n(n+1)...(n+k−1)(z+i)^(−n−k)   (x^n )^((p)) =n(n−1)...(n−p+1)x^(n−p) ⇒(x^n )^((n−1−k)) =n(n−1)...(k+2)x^(k+1)  ⇒  Res(ϕ,i) = (1/((n−1)!)) Σ_(k=0) ^(n−1)   C_(n−1) ^k  (−1)^k n(n+1)...(n+k−1)(2i)^(−n−k)  (n−1)...(k+2)i^(k+1)   A_n =2iπ Res(ϕ,i)
letAn=+xndx(1+x2)nandletφ(z)=zn(1+z2)nφ(z)=zn(zi)n(z+i)n+φ(z)dz=2iπRes(φ,i)butRes(φ,i)=limzi1(n1)!{(zi)nφ(z)}(n1)=limzi1(n1)!{xn(z+i)n}(n1)and{xn(z+i)n}(n1)=k=0n1Cn1k{(z+i)n}(k)(xn)(n1k)but(z+i)n}(k)=(1)kn(n+1)(n+k1)(z+i)nk(xn)(p)=n(n1)(np+1)xnp(xn)(n1k)=n(n1)(k+2)xk+1Res(φ,i)=1(n1)!k=0n1Cn1k(1)kn(n+1)(n+k1)(2i)nk(n1)(k+2)ik+1An=2iπRes(φ,i)

Leave a Reply

Your email address will not be published. Required fields are marked *