Menu Close

calculate-xsin-2x-1-x-2-2-dx-




Question Number 39033 by maxmathsup by imad last updated on 01/Jul/18
calculate ∫_(−∞) ^(+∞)    ((xsin(2x))/((1+x^2 )^2 ))dx
calculate+xsin(2x)(1+x2)2dx
Commented by math khazana by abdo last updated on 02/Jul/18
let I  = ∫_(−∞) ^(+∞)  ((x sin(2x))/((1+x^2 )^2 ))dx  I = Im( ∫_(−∞) ^(+∞)  ((x e^(ix) )/((1+x^2 )^2 ))dx) let ϕ(z)=((z e^(iz) )/((1+z^2 )^2 ))  ϕ(z) = ((z e^(iz) )/((z−i)^2 (z+i)^2 ))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i)=lim_(z→i)   (1/((2−1)!)) {(z−i)^2 ϕ(z)}^((1))   =lim_(z→i)   { ((z e^(iz) )/((z+i)^2 ))}^((1))   =lim_(z→i) (((e^(iz)   +iz e^(iz) )(z+i)^2  −2(z+i)z e^(iz) )/((z+i)^4 ))  =lim_(z→i)   (((1+iz)e^(ix) (z+i) −2 ze^(iz) )/((z+i)^3 ))  =((−2i e^(−1) )/((2i)^3 )) = ((−2i e^(−1) )/(−8i)) = (e^(−1) /4) ⇒  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ (e^(−1) /4) = ((iπe^(−1) )/2)  ⇒  I  = Im(∫_(−∞) ^(+∞)   ϕ(z)dz ) =(π/(2e)) .
letI=+xsin(2x)(1+x2)2dxI=Im(+xeix(1+x2)2dx)letφ(z)=zeiz(1+z2)2φ(z)=zeiz(zi)2(z+i)2+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(21)!{(zi)2φ(z)}(1)=limzi{zeiz(z+i)2}(1)=limzi(eiz+izeiz)(z+i)22(z+i)zeiz(z+i)4=limzi(1+iz)eix(z+i)2zeiz(z+i)3=2ie1(2i)3=2ie18i=e14+φ(z)dz=2iπe14=iπe12I=Im(+φ(z)dz)=π2e.
Commented by math khazana by abdo last updated on 02/Jul/18
the Q is find  I = ∫_(−∞) ^(+∞)    ((x sin(x))/((1+x^2 )^2 ))dx
theQisfindI=+xsin(x)(1+x2)2dx

Leave a Reply

Your email address will not be published. Required fields are marked *