Menu Close

Calculate-xtan-x-cos-4-x-dx-




Question Number 167773 by LEKOUMA last updated on 24/Mar/22
Calculate  ∫((xtan x)/(cos^4 x))dx
Calculatextanxcos4xdx
Answered by qaz last updated on 25/Mar/22
I=∫((xtan x)/(cos^4 x))dx  =∫x(tan^3 +tan x)d(tan x)  =x((1/4)tan^3 x+(1/2)tan x)−∫((1/4)tan^3 x+(1/2)tan x)dx  =x((1/4)tan^3 x+(1/2)tan x)−I_1 −I_2   I_1 =(1/4)∫tan^3 xdx=(1/4)∫(sec^2 x−1)tan xdx=(1/8)tan^2 x+(1/4)lncos x+C_1   I_2 =(1/2)∫tan xdx=−(1/2)lncos x+C_2   ⇒I=x((1/4)tan^3 x+(1/2)tan x)−(1/8)tan^2 x+(1/4)lncos x+C
I=xtanxcos4xdx=x(tan3+tanx)d(tanx)=x(14tan3x+12tanx)(14tan3x+12tanx)dx=x(14tan3x+12tanx)I1I2I1=14tan3xdx=14(sec2x1)tanxdx=18tan2x+14lncosx+C1I2=12tanxdx=12lncosx+C2I=x(14tan3x+12tanx)18tan2x+14lncosx+C
Answered by MJS_new last updated on 25/Mar/22
∫((xtan x)/(cos^4  x))dx=∫((xsin x)/(cos^5  x))dx=       u′=((sin x)/(cos^5  x)) → u=(1/(4cos^4  x))       v=x → v′=1  =(x/(4cos^4  x))−(1/4)∫(dx/(cos^4  x))=  =(x/(4cos^4  x))−((sin x (1+2cos^2  x))/(12cos^3  x))+C
xtanxcos4xdx=xsinxcos5xdx=u=sinxcos5xu=14cos4xv=xv=1=x4cos4x14dxcos4x==x4cos4xsinx(1+2cos2x)12cos3x+C
Commented by peter frank last updated on 26/Mar/22
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *