Menu Close

calculate-z-5-2-z-2-z-2-9-z-i-2-dz-




Question Number 146547 by mathmax by abdo last updated on 13/Jul/21
calculate ∫_(∣z∣=5)    ((2−z^2 )/((z^2 +9)(z−i)^2 ))dz
calculatez∣=52z2(z2+9)(zi)2dz
Answered by Olaf_Thorendsen last updated on 14/Jul/21
  f(z) = ((2−z^2 )/((z^2 +9)(z−i)^2 ))  f(z) = ((2−z^2 )/((z−3i)(z+3i)(z−i)^2 ))  Ω = ∫_(∣z∣=5) f(z)dz  Res_(3i) f = lim_(z→3i) (z−3i)f(z) = ((11i)/(24))  Res_(−3i) f = lim_(z→−3i) (z+3i)f(z) = −((11i)/(96))  Res_i f = (1/((2−1)!))lim_(z→i) (∂^(2−1) /∂z^(2−1) )(z−i)^2 f(z)  Res_i f = lim_(z→i) (∂/∂z)(((2−z^2 )/(z^2 +9)))  Res_i f = lim_(z→i) (((−2z(z^2 +9)−(2−z^2 )2z)/((z^2 +9)^2 )))  Res_i f = (((−2i×8−3×2i)/(64))) = −((11i)/(32))    Ω = Σ_k Res_z_k  f = ((11i)/(24))−((11i)/(96))−((11i)/(32)) = 0
f(z)=2z2(z2+9)(zi)2f(z)=2z2(z3i)(z+3i)(zi)2Ω=z∣=5f(z)dzRes3if=limz3i(z3i)f(z)=11i24Res3if=limz3i(z+3i)f(z)=11i96Resif=1(21)!limzi21z21(zi)2f(z)Resif=limziz(2z2z2+9)Resif=limzi(2z(z2+9)(2z2)2z(z2+9)2)Resif=(2i×83×2i64)=11i32Ω=kReszkf=11i2411i9611i32=0
Commented by mathmax by abdo last updated on 14/Jul/21
thank you sir.
thankyousir.
Answered by qaz last updated on 14/Jul/21
poles all inside circle ∣z∣=5,  sum of function residues is 0.i think we dont need to evalue.
polesallinsidecirclez∣=5,sumoffunctionresiduesis0.ithinkwedontneedtoevalue.
Answered by mathmax by abdo last updated on 14/Jul/21
f(z)=((2−z^2 )/((z^2 +9)(2−i)^2 )) ⇒f(z)=((2−z^2 )/((z−3i)(z+3i)(z−i)^2 ))  the poles of f are 3i,−3i andi  (all interior in the circle ∣z∣=5)  residus theorem ⇒∫_(∣z∣=5) f(z)dz =2iπ{Res(f,3i)+Res(f,−3i)+Res(f,i)}  Res(f,3i)=((2−(3i)^2 )/(6i(2i)^2 ))=−((11)/(12i))  Res(f,−3i)=((2−(−3i)^2 )/((−6i)(−4i)^2 ))=−((11)/(6.16i))=−((11)/(96i))  Res(f,i) =lim_(z→i)    (1/((2−1)!)){(z−i)^2 f(z)}^((1))   =lim_(z→i)    {((2−z^2 )/(z^2 +9))}^((1))  =lim_(z→i)   ((−2z(z^2 +9)−2z(2−z^2 ))/((z^2  +9)^2 ))  =lim_(z→i)    ((−18z−4z)/((z^2  +9)^2 ))=((−22i)/8^2 )=−((22i)/(64))=−((11i)/(32)) ⇒  ∫_(∣z∣=5)   f(z)dz=2iπ{−((11)/(12i))−((11)/(96i))+((11)/(32i))}=....
f(z)=2z2(z2+9)(2i)2f(z)=2z2(z3i)(z+3i)(zi)2thepolesoffare3i,3iandi(allinteriorinthecirclez∣=5)residustheoremz∣=5f(z)dz=2iπ{Res(f,3i)+Res(f,3i)+Res(f,i)}Res(f,3i)=2(3i)26i(2i)2=1112iRes(f,3i)=2(3i)2(6i)(4i)2=116.16i=1196iRes(f,i)=limzi1(21)!{(zi)2f(z)}(1)=limzi{2z2z2+9}(1)=limzi2z(z2+9)2z(2z2)(z2+9)2=limzi18z4z(z2+9)2=22i82=22i64=11i32z∣=5f(z)dz=2iπ{1112i1196i+1132i}=.
Commented by mathmax by abdo last updated on 14/Jul/21
sorry  Res(f,3i)=−((11)/(24i))  ...!
sorryRes(f,3i)=1124i!

Leave a Reply

Your email address will not be published. Required fields are marked *