Menu Close

calculate-ze-2-z-2-dz-with-t-3-e-it-t-0-2pi-




Question Number 148371 by mathmax by abdo last updated on 27/Jul/21
calculate ∫_γ ze^(2/z^2 ) dz   with γ(t)=(√3)e^(it)       t∈[0,2π]
calculateγze2z2dzwithγ(t)=3eitt[0,2π]
Answered by mathmax by abdo last updated on 27/Jul/21
let f(z)=ze^(2/z^2 )      le seul point singulier de f is0 ⇒  ∫_γ f(z)dz =2iπ Res(f,o)  on determine la serie de laurent  on e^u  =Σ_(n=0) ^∞  (u^n /(n!)) ⇒e^(2/z^2 )   =Σ_(n=0) ^∞  (1/(n!))((2/z^2 ))^n   =Σ_(n=0) ^∞  (2^n /(n! z^(2n) )) ⇒f(z)=z Σ_(n=0) ^∞  (2^n /(n! z^(2n) ))  =z{1+(2/(1!z^2 )) +(4/(2!z^4 ))+...} =z +(2/z) +(4/(2z^3 ))+... ⇒Res(f,o)=2 ⇒  ∫_γ f(z)dz =2iπ(2) =4iπ
letf(z)=ze2z2leseulpointsingulierdefis0γf(z)dz=2iπRes(f,o)ondeterminelaseriedelaurentoneu=n=0unn!e2z2=n=01n!(2z2)n=n=02nn!z2nf(z)=zn=02nn!z2n=z{1+21!z2+42!z4+}=z+2z+42z3+Res(f,o)=2γf(z)dz=2iπ(2)=4iπ

Leave a Reply

Your email address will not be published. Required fields are marked *