Menu Close

calculateA-n-0-dx-x-2-n-x-2-2n-with-n-integr-natural-1-




Question Number 109214 by mathmax by abdo last updated on 22/Aug/20
calculateA_n = ∫_0 ^∞    (dx/((x^2 +n)(x^2  +2n)))  with n integr natural≥1
calculateAn=0dx(x2+n)(x2+2n)withnintegrnatural1
Answered by mathmax by abdo last updated on 22/Aug/20
2A_n =∫_(−∞) ^(+∞)  (dx/((x^2 +n)(x^2  +2n)))  let ϕ(z) =(1/((z^2 +n)(z^2  +2n))) ⇒  ϕ(z) =(1/((z−i(√n))(z+i(√n))(z−i(√(2n)))(z+i(√(2n))))) residus theorem ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ {Res(ϕ,i(√n)) +Res(ϕ,−i(√n))}  Res(ϕ,i(√n)) =(1/(2i(√n)(−n+2n))) =(1/(2in(√n)))  Res(ϕ,i(√(2n))) =(1/(2i(√(2n))(−2n+n))) =−(1/(2in(√(2n)))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{(1/(2in(√n)))−(1/(2in(√(2n))))} =(π/(n(√n))) −(π/(n(√2)(√n)))  =(π/(n(√n))){1−(1/( (√2)))} =((π((√2)−1))/(n(√(2n)))) ⇒ A_n =((π((√2)−1))/(2n(√(2n))))
2An=+dx(x2+n)(x2+2n)letφ(z)=1(z2+n)(z2+2n)φ(z)=1(zin)(z+in)(zi2n)(z+i2n)residustheorem+φ(z)dz=2iπ{Res(φ,in)+Res(φ,in)}Res(φ,in)=12in(n+2n)=12innRes(φ,i2n)=12i2n(2n+n)=12in2n+φ(z)dz=2iπ{12inn12in2n}=πnnπn2n=πnn{112}=π(21)n2nAn=π(21)2n2n

Leave a Reply

Your email address will not be published. Required fields are marked *