Menu Close

calculatef-a-0-ln-1-at-2-1-t-4-dt-with-a-gt-0-2-find-the-value-of-0-ln-3-t-2-1-t-4-dt-




Question Number 51834 by Abdo msup. last updated on 31/Dec/18
calculatef(a)= ∫_0 ^∞   ((ln(1+at^2 ))/(1+t^4 ))dt  with a>0.  2)find the value of ∫_0 ^∞    ((ln(3+t^2 ))/(1+t^4 ))dt.
calculatef(a)=0ln(1+at2)1+t4dtwitha>0.2)findthevalueof0ln(3+t2)1+t4dt.
Commented by Abdo msup. last updated on 31/Dec/18
1) we have f^′ (a)= ∫_0 ^∞    (t^2 /((1+at^2 )(t^4 +1)))dt  =(1/2) ∫_(−∞) ^(+∞)    (t^2 /((at^2  +1)(t^4  +1)))dt  let   ϕ(z)=(z^2 /((az^2  +1)(z^(4 ) +1)))  we have   ϕ(z)= (z^2 /(((√a)z−i)((√a)z +i)(z^2 −i)(z^2  +i)))  =(z^2 /(a(z−(i/( (√a))))(z+(i/( (√a))))(z−e^((iπ)/4) )(z+e^((iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) )))  the poles of ϕ are +^−   (i/( (√a)))  and +^−  e^((iπ)/4)   and +^−  e^(−((iπ)/4))   (all simples)  residus tbeorem give  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ{ Res(ϕ,(i/( (√a))))+Res(ϕ,e^((iπ)/4) )+Res(ϕ,−e^(−((iπ)/4)) )}  Res(ϕ, (i/( (√a)))) =((−1)/(a^2 ((2i)/( (√a)))((1/a^2 )+1))) =((−(√a))/(2i(1+a^2 ))) =((i(√a))/(2(1+a^2 )))  Res(ϕ,e^((iπ)/4) ) =(i/((ai+1)(2e^((iπ)/4) )(2i))) = (e^(−((iπ)/4)) /(4(1+ai)))  Res(ϕ,−e^(−((iπ)/4)) ) = ((−i)/((1−ai)(−2e^(−((iπ)/4)) )(−2i)))  = −(e^((iπ)/4) /(4(1−ai))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ ((i(√a))/(2(1+a^2 ))) −(1/4)(2iIm( (e^((iπ)/4) /(1−ai)))}  =((−π(√a))/(1+a^2 )) −π Im((e^((iπ)/4) /(1−ai)))  but  (e^((iπ)/4) /(1−ai)) = ((e^((iπ)/4) (1+ai))/(1+a^2 )) = ((((1/( (√2)))+(i/( (√2))))(1+ai))/(1+a^2 ))  =(1/( (√2))) (((1+i)(1+ai))/(1+a^2 )) =((1+ai+i−a)/( (√2)(1+a^2 ))) =((1−a +i(1+a))/( (√2)(1+a^2 ))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz = ((−π(√a))/(1+a^2 )) −π ((1+a)/( (√2)(1+a^2 ))) ⇒  f^′ (a) = ((−π(√a))/(2(1+a^2 ))) −((π(1+a))/(2(√2)(1+a^2 ))) ⇒  f(a) =−(π/2) ∫   (((√a) da)/(1+a^2 )) −(π/(2(√2))) ∫  ((1+a)/(1+a^2 )) da +c
1)wehavef(a)=0t2(1+at2)(t4+1)dt=12+t2(at2+1)(t4+1)dtletφ(z)=z2(az2+1)(z4+1)wehaveφ(z)=z2(azi)(az+i)(z2i)(z2+i)=z2a(zia)(z+ia)(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)thepolesofφare+iaand+eiπ4and+eiπ4(allsimples)residustbeoremgive+φ(z)dz=2iπ{Res(φ,ia)+Res(φ,eiπ4)+Res(φ,eiπ4)}Res(φ,ia)=1a22ia(1a2+1)=a2i(1+a2)=ia2(1+a2)Res(φ,eiπ4)=i(ai+1)(2eiπ4)(2i)=eiπ44(1+ai)Res(φ,eiπ4)=i(1ai)(2eiπ4)(2i)=eiπ44(1ai)+φ(z)dz=2iπ{ia2(1+a2)14(2iIm(eiπ41ai)}=πa1+a2πIm(eiπ41ai)buteiπ41ai=eiπ4(1+ai)1+a2=(12+i2)(1+ai)1+a2=12(1+i)(1+ai)1+a2=1+ai+ia2(1+a2)=1a+i(1+a)2(1+a2)+φ(z)dz=πa1+a2π1+a2(1+a2)f(a)=πa2(1+a2)π(1+a)22(1+a2)f(a)=π2ada1+a2π221+a1+a2da+c

Leave a Reply

Your email address will not be published. Required fields are marked *