Question Number 51834 by Abdo msup. last updated on 31/Dec/18
$${calculatef}\left({a}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left(\mathrm{1}+{at}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{4}} }{dt}\:\:{with}\:{a}>\mathrm{0}. \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left(\mathrm{3}+{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{4}} }{dt}. \\ $$
Commented by Abdo msup. last updated on 31/Dec/18
$$\left.\mathrm{1}\right)\:{we}\:{have}\:{f}^{'} \left({a}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{\mathrm{2}} }{\left(\mathrm{1}+{at}^{\mathrm{2}} \right)\left({t}^{\mathrm{4}} +\mathrm{1}\right)}{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{t}^{\mathrm{2}} }{\left({at}^{\mathrm{2}} \:+\mathrm{1}\right)\left({t}^{\mathrm{4}} \:+\mathrm{1}\right)}{dt}\:\:{let}\: \\ $$$$\varphi\left({z}\right)=\frac{{z}^{\mathrm{2}} }{\left({az}^{\mathrm{2}} \:+\mathrm{1}\right)\left({z}^{\mathrm{4}\:} +\mathrm{1}\right)}\:\:{we}\:{have}\: \\ $$$$\varphi\left({z}\right)=\:\frac{{z}^{\mathrm{2}} }{\left(\sqrt{{a}}{z}−{i}\right)\left(\sqrt{{a}}{z}\:+{i}\right)\left({z}^{\mathrm{2}} −{i}\right)\left({z}^{\mathrm{2}} \:+{i}\right)} \\ $$$$=\frac{{z}^{\mathrm{2}} }{{a}\left({z}−\frac{{i}}{\:\sqrt{{a}}}\right)\left({z}+\frac{{i}}{\:\sqrt{{a}}}\right)\left({z}−{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}+{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}+{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)} \\ $$$${the}\:{poles}\:{of}\:\varphi\:{are}\:\overset{−} {+}\:\:\frac{{i}}{\:\sqrt{{a}}}\:\:{and}\:\overset{−} {+}\:{e}^{\frac{{i}\pi}{\mathrm{4}}} \:\:{and}\:\overset{−} {+}\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} \:\:\left({all}\:{simples}\right) \\ $$$${residus}\:{tbeorem}\:{give} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\:{Res}\left(\varphi,\frac{{i}}{\:\sqrt{{a}}}\right)+{Res}\left(\varphi,{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)+{Res}\left(\varphi,−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\right\} \\ $$$${Res}\left(\varphi,\:\frac{{i}}{\:\sqrt{{a}}}\right)\:=\frac{−\mathrm{1}}{{a}^{\mathrm{2}} \frac{\mathrm{2}{i}}{\:\sqrt{{a}}}\left(\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\mathrm{1}\right)}\:=\frac{−\sqrt{{a}}}{\mathrm{2}{i}\left(\mathrm{1}+{a}^{\mathrm{2}} \right)}\:=\frac{{i}\sqrt{{a}}}{\mathrm{2}\left(\mathrm{1}+{a}^{\mathrm{2}} \right)} \\ $$$${Res}\left(\varphi,{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\:=\frac{{i}}{\left({ai}+\mathrm{1}\right)\left(\mathrm{2}{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\left(\mathrm{2}{i}\right)}\:=\:\frac{{e}^{−\frac{{i}\pi}{\mathrm{4}}} }{\mathrm{4}\left(\mathrm{1}+{ai}\right)} \\ $$$${Res}\left(\varphi,−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\:=\:\frac{−{i}}{\left(\mathrm{1}−{ai}\right)\left(−\mathrm{2}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\left(−\mathrm{2}{i}\right)} \\ $$$$=\:−\frac{{e}^{\frac{{i}\pi}{\mathrm{4}}} }{\mathrm{4}\left(\mathrm{1}−{ai}\right)}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\:\frac{{i}\sqrt{{a}}}{\mathrm{2}\left(\mathrm{1}+{a}^{\mathrm{2}} \right)}\:−\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{2}{iIm}\left(\:\frac{{e}^{\frac{{i}\pi}{\mathrm{4}}} }{\mathrm{1}−{ai}}\right)\right\}\right. \\ $$$$=\frac{−\pi\sqrt{{a}}}{\mathrm{1}+{a}^{\mathrm{2}} }\:−\pi\:{Im}\left(\frac{{e}^{\frac{{i}\pi}{\mathrm{4}}} }{\mathrm{1}−{ai}}\right)\:\:{but} \\ $$$$\frac{{e}^{\frac{{i}\pi}{\mathrm{4}}} }{\mathrm{1}−{ai}}\:=\:\frac{{e}^{\frac{{i}\pi}{\mathrm{4}}} \left(\mathrm{1}+{ai}\right)}{\mathrm{1}+{a}^{\mathrm{2}} }\:=\:\frac{\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\frac{{i}}{\:\sqrt{\mathrm{2}}}\right)\left(\mathrm{1}+{ai}\right)}{\mathrm{1}+{a}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\frac{\left(\mathrm{1}+{i}\right)\left(\mathrm{1}+{ai}\right)}{\mathrm{1}+{a}^{\mathrm{2}} }\:=\frac{\mathrm{1}+{ai}+{i}−{a}}{\:\sqrt{\mathrm{2}}\left(\mathrm{1}+{a}^{\mathrm{2}} \right)}\:=\frac{\mathrm{1}−{a}\:+{i}\left(\mathrm{1}+{a}\right)}{\:\sqrt{\mathrm{2}}\left(\mathrm{1}+{a}^{\mathrm{2}} \right)}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\:\frac{−\pi\sqrt{{a}}}{\mathrm{1}+{a}^{\mathrm{2}} }\:−\pi\:\frac{\mathrm{1}+{a}}{\:\sqrt{\mathrm{2}}\left(\mathrm{1}+{a}^{\mathrm{2}} \right)}\:\Rightarrow \\ $$$${f}^{'} \left({a}\right)\:=\:\frac{−\pi\sqrt{{a}}}{\mathrm{2}\left(\mathrm{1}+{a}^{\mathrm{2}} \right)}\:−\frac{\pi\left(\mathrm{1}+{a}\right)}{\mathrm{2}\sqrt{\mathrm{2}}\left(\mathrm{1}+{a}^{\mathrm{2}} \right)}\:\Rightarrow \\ $$$${f}\left({a}\right)\:=−\frac{\pi}{\mathrm{2}}\:\int\:\:\:\frac{\sqrt{{a}}\:{da}}{\mathrm{1}+{a}^{\mathrm{2}} }\:−\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}\:\int\:\:\frac{\mathrm{1}+{a}}{\mathrm{1}+{a}^{\mathrm{2}} }\:{da}\:+{c}\: \\ $$