Menu Close

calculatef-a-a-a-dx-t-2-x-2-3-2-with-a-gt-0-




Question Number 33599 by abdo imad last updated on 19/Apr/18
calculatef(a)=  ∫_(−a) ^a     (dx/((t^2  +x^2 )^(3/2) ))  with a>0 .
calculatef(a)=aadx(t2+x2)32witha>0.
Commented by abdo imad last updated on 20/Apr/18
case 1   t≠o  changement x=ttanθ  give  f(a) = ∫_(−arctan((a/t))) ^(arctan((a/t)))     (1/((t^2 (1+tan^2 θ))^(3/2) )) t(1+tan^2 θ)dθ  = ∫_(−arctan((a/t))) ^(arctan((a/t)))      ((t(1+tan^2 θ))/(t^3 (1+tan^2 θ)^(3/2) ))dθ  =(1/t^2 ) ∫_(−arctan((a/t))) ^(arctan((a/t)))        (dθ/((1+tan^2 θ)^(1/2) ))  =(2/t^2 ) ∫_0 ^(arctan((a/t)))   cosθ dθ  =(2/t^2 )[ sinθ]_0 ^(arcan((a/t)))   = (2/t^2 ) sin(arctan((a/t)))  but we have sin(arctanu)=(u/( (√(1+u^2 ))))  f(a) = (2/t^2 )  ((a/t)/( (√(1+(a^2 /t^2 ))))) = ((2a)/t)   (1/( (√((t^2 +a^2 )/t^2 ))))  =((2a∣t∣)/(t(√(a^2  +t^2 ))))  f(a) = ((2aξ(t))/( (√(t^2  +a^2 ))))   with  ξ(t)=1 if t>0 and ξ(t)=−1 if t<0  case 2 if t=0  f(a) = ∫_(−a) ^a   (dx/x^3 ) =0 because x→x^3  is odd.
case1tochangementx=ttanθgivef(a)=arctan(at)arctan(at)1(t2(1+tan2θ))32t(1+tan2θ)dθ=arctan(at)arctan(at)t(1+tan2θ)t3(1+tan2θ)32dθ=1t2arctan(at)arctan(at)dθ(1+tan2θ)12=2t20arctan(at)cosθdθ=2t2[sinθ]0arcan(at)=2t2sin(arctan(at))butwehavesin(arctanu)=u1+u2f(a)=2t2at1+a2t2=2at1t2+a2t2=2atta2+t2f(a)=2aξ(t)t2+a2withξ(t)=1ift>0andξ(t)=1ift<0case2ift=0f(a)=aadxx3=0becausexx3isodd.
Commented by abdo imad last updated on 20/Apr/18
error at line 7  f(a) = ((2a)/t^2 ) (1/( (√((t^2  +a^2 )/t^2 )))) =((2a ∣t∣)/(t^2 (√(a^2  +t^2 ))))  = ((2aξ(t))/(t(√(a^2  +t^2 )))) .
erroratline7f(a)=2at21t2+a2t2=2att2a2+t2=2aξ(t)ta2+t2.
Answered by alex041103 last updated on 20/Apr/18
∫(dx/((t^2 +x^2 )^(3/2) ))=(1/t^3 )∫(dx/((1+((x/t))^2 )^(3/2) ))  Let u=x/t ⇒ dx=tdu  (1/t^3 )∫(dx/((1+((x/t))^2 )^(3/2) ))=(1/t^2 )∫(du/((1+u^2 )^(3/2) ))  We use the standart trigonometric substitution:  u=tanθ du=sec^2 θdθ  (1/t^2 )∫(du/((1+u^2 )^(3/2) ))=(1/t^2 )∫((sec^2 θdθ)/((1+tan^2 θ)^(3/2) ))  And (1+tan^2 θ)^(3/2) =(sec^2 θ)^(3/2) =sec^3 θ  ⇒(1/t^2 )∫((sec^2 θdθ)/((1+tan^2 θ)^(3/2) ))=(1/t^2 )∫((sec^2 θdθ)/(sec^3 θ))=  =(1/t^2 )∫cosθdθ=(1/t^2 )sinθ  u=tanθ⇒θ=arctan(u)  ⇒(1/t^2 )sinθ=(1/t^2 ) (u/( (√(1+u^2 ))))=(u/(t(√(t^2 +(tu)^2 ))))=  =(1/t^2 ) (x/( (√(t^2 +x^2 ))))  ⇒∫_(−a) ^a  (dx/((t^2  +x^2 )^(3/2) ))=(1/t^2 )[(x/( (√(t^2 +x^2 )))) ]_(−a) ^a =  =((2a)/(t^2 (√(t^2 +a^2 ))))  ⇒∫_(−a) ^a  (dx/((t^2  +x^2 )^(3/2) ))=((2a)/(t^2 (√(t^2 +a^2 ))))  Any questions?
dx(t2+x2)3/2=1t3dx(1+(xt)2)3/2Letu=x/tdx=tdu1t3dx(1+(xt)2)3/2=1t2du(1+u2)3/2Weusethestandarttrigonometricsubstitution:u=tanθdu=sec2θdθ1t2du(1+u2)3/2=1t2sec2θdθ(1+tan2θ)3/2And(1+tan2θ)3/2=(sec2θ)3/2=sec3θ1t2sec2θdθ(1+tan2θ)3/2=1t2sec2θdθsec3θ==1t2cosθdθ=1t2sinθu=tanθθ=arctan(u)1t2sinθ=1t2u1+u2=utt2+(tu)2==1t2xt2+x2aadx(t2+x2)3/2=1t2[xt2+x2]aa==2at2t2+a2aadx(t2+x2)3/2=2at2t2+a2Anyquestions?
Commented by abdo imad last updated on 20/Apr/18
you have commited a error sir alex .
youhavecommitedaerrorsiralex.
Commented by alex041103 last updated on 20/May/18
Can you point it out, so I can fix it.
Canyoupointitout,soIcanfixit.

Leave a Reply

Your email address will not be published. Required fields are marked *