Question Number 33599 by abdo imad last updated on 19/Apr/18

Commented by abdo imad last updated on 20/Apr/18
![case 1 t≠o changement x=ttanθ give f(a) = ∫_(−arctan((a/t))) ^(arctan((a/t))) (1/((t^2 (1+tan^2 θ))^(3/2) )) t(1+tan^2 θ)dθ = ∫_(−arctan((a/t))) ^(arctan((a/t))) ((t(1+tan^2 θ))/(t^3 (1+tan^2 θ)^(3/2) ))dθ =(1/t^2 ) ∫_(−arctan((a/t))) ^(arctan((a/t))) (dθ/((1+tan^2 θ)^(1/2) )) =(2/t^2 ) ∫_0 ^(arctan((a/t))) cosθ dθ =(2/t^2 )[ sinθ]_0 ^(arcan((a/t))) = (2/t^2 ) sin(arctan((a/t))) but we have sin(arctanu)=(u/( (√(1+u^2 )))) f(a) = (2/t^2 ) ((a/t)/( (√(1+(a^2 /t^2 ))))) = ((2a)/t) (1/( (√((t^2 +a^2 )/t^2 )))) =((2a∣t∣)/(t(√(a^2 +t^2 )))) f(a) = ((2aξ(t))/( (√(t^2 +a^2 )))) with ξ(t)=1 if t>0 and ξ(t)=−1 if t<0 case 2 if t=0 f(a) = ∫_(−a) ^a (dx/x^3 ) =0 because x→x^3 is odd.](https://www.tinkutara.com/question/Q33632.png)
Commented by abdo imad last updated on 20/Apr/18

Answered by alex041103 last updated on 20/Apr/18
![∫(dx/((t^2 +x^2 )^(3/2) ))=(1/t^3 )∫(dx/((1+((x/t))^2 )^(3/2) )) Let u=x/t ⇒ dx=tdu (1/t^3 )∫(dx/((1+((x/t))^2 )^(3/2) ))=(1/t^2 )∫(du/((1+u^2 )^(3/2) )) We use the standart trigonometric substitution: u=tanθ du=sec^2 θdθ (1/t^2 )∫(du/((1+u^2 )^(3/2) ))=(1/t^2 )∫((sec^2 θdθ)/((1+tan^2 θ)^(3/2) )) And (1+tan^2 θ)^(3/2) =(sec^2 θ)^(3/2) =sec^3 θ ⇒(1/t^2 )∫((sec^2 θdθ)/((1+tan^2 θ)^(3/2) ))=(1/t^2 )∫((sec^2 θdθ)/(sec^3 θ))= =(1/t^2 )∫cosθdθ=(1/t^2 )sinθ u=tanθ⇒θ=arctan(u) ⇒(1/t^2 )sinθ=(1/t^2 ) (u/( (√(1+u^2 ))))=(u/(t(√(t^2 +(tu)^2 ))))= =(1/t^2 ) (x/( (√(t^2 +x^2 )))) ⇒∫_(−a) ^a (dx/((t^2 +x^2 )^(3/2) ))=(1/t^2 )[(x/( (√(t^2 +x^2 )))) ]_(−a) ^a = =((2a)/(t^2 (√(t^2 +a^2 )))) ⇒∫_(−a) ^a (dx/((t^2 +x^2 )^(3/2) ))=((2a)/(t^2 (√(t^2 +a^2 )))) Any questions?](https://www.tinkutara.com/question/Q33631.png)
Commented by abdo imad last updated on 20/Apr/18

Commented by alex041103 last updated on 20/May/18
