Question Number 96495 by abdomathmax last updated on 01/Jun/20

Answered by Sourav mridha last updated on 02/Jun/20
![J−I=∫_0 ^(𝛑/2) ln[tan((𝛑/4)−x)]dx...(i) and also J−I=∫_0 ^(𝛑/2) ln[cot((𝛑/4)−x)]dx .........(ii) (i)+(ii)we get..J−I=0,J=I....(g) now J+I=∫_0 ^(𝛑/2) ln(cos2x)dx...(v) now 2x=t,then 2J=(1/2)∫_0 ^𝛑 ln(cost)dt we can also write this as −− 2J=∫_0 ^(𝛑/2) ln(cost)dt....(a) so, 2J=∫_0 ^(𝛑/2) ln(sint)dt....(b) (a)+(b) 4J=(𝛑/2)ln((1/2))+∫_0 ^(𝛑/2) ln(sin(2t))dt by apply: the same approch like eq^n (v)we get,∫_0 ^(π/2) ln(sin2t)dt=2J so,4J=(𝛑/2)ln((1/2))+2J so ,2J=(𝛑/2)ln((1/2)) now from (g) I=J=(𝛑/4)ln((1/2))](https://www.tinkutara.com/question/Q96512.png)
Commented by abdomathmax last updated on 02/Jun/20

Commented by Sourav mridha last updated on 02/Jun/20
welcome....
Answered by mathmax by abdo last updated on 02/Jun/20
![let f(a) =∫_0 ^(π/2) ln(cosx +asinx)dx we have f^′ (a) =∫_0 ^(π/2) ((sinx)/(cosx +asinx))dx =∫_0 ^(π/2) (dx/(a +(1/(tanx)))) =_(tanx =u) ∫_0 ^∞ (du/((1+u^2 )(a+(1/u)))) =∫_0 ^∞ ((udu)/((au+1)(u^2 +1))) let decompose F(u) =(u/((au+1)(u^2 +1))) ⇒F(u) =(α/(au+1)) +((βu +λ)/(u^2 +1)) α =((−1)/(a((1/a^2 )+1))) =((−a^2 )/(a(1+a^2 ))) =((−a)/(1+a^2 )) lim_(u→+∞) uF(u) =0 =(α/a) +β ⇒β =−(α/a) =(1/(1+a^2 )) F(0) =0 =α +λ ⇒λ =(a/(1+a^2 )) ⇒F(u) =−(a/((1+a^2 )(au+1))) +(1/(1+a^2 ))×((u+a)/(u^2 +1)) ⇒∫_0 ^∞ F(u)du =−(a/(1+a^2 ))∫_0 ^∞ (du/(au+1)) +(1/(2(1+a^2 )))∫_0 ^∞ ((2u)/(u^2 +1)) +(a/(1+a^2 )) ∫_0 ^∞ (du/(u^2 +1)) =(1/(1+a^2 ))[ln(√(u^2 +1))−ln(au+1)]_0 ^∞ +((πa)/(2(1+a^2 ))) =(1/(1+a^2 ))[ln(((√(1+u^2 ))/(au +1)))]_0 ^∞ +((πa)/(2(1+a^2 ))) =−((ln(a))/(1+a^2 )) +((πa)/(2(1+a^2 ))) ⇒ f(a) =−∫_0 ^a ((lnt)/(1+t^2 ))dt +(π/4)ln(1+a^2 ) +c but f(0) =c =−(π/2)ln(2) ⇒f(a) =(π/4)ln(1+a^2 )−(π/2)ln(2)−∫_0 ^a ((lnt)/(1+t^2 ))dt ∫_0 ^(π/2) ln(cosx +sinx)dx =f(1) =(π/4)ln(2)−(π/2)ln(2)−∫_0 ^1 ((lnt)/(1+t^2 ))dt (→t =tanθ) =−(π/4)ln(2)−∫_0 ^(π/2) ln(tanθ)dθ =−(π/4)ln(2)−0 (because ∫_0 ^(π/2) ln(cosθ)dθ=∫_0 ^(π/2) ln(sinθ)dθ)⇒ ⇒∫_0 ^(π/2) ln(cosx −sinx)dx =−(π/4)ln(2)](https://www.tinkutara.com/question/Q96560.png)
Commented by mathmax by abdo last updated on 02/Jun/20
