Menu Close

calculateI-0-pi-2-ln-cosx-sinx-dx-and-J-0-pi-2-ln-cosx-sinx-dx-




Question Number 96495 by abdomathmax last updated on 01/Jun/20
calculateI = ∫_0 ^(π/2) ln(cosx +sinx)dx  and J =∫_0 ^(π/2) ln(cosx−sinx)dx
calculateI=0π2ln(cosx+sinx)dxandJ=0π2ln(cosxsinx)dx
Answered by Sourav mridha last updated on 02/Jun/20
J−I=∫_0 ^(𝛑/2) ln[tan((𝛑/4)−x)]dx...(i)  and also J−I=∫_0 ^(𝛑/2) ln[cot((𝛑/4)−x)]dx                                .........(ii)  (i)+(ii)we get..J−I=0,J=I....(g)  now J+I=∫_0 ^(𝛑/2) ln(cos2x)dx...(v)  now 2x=t,then  2J=(1/2)∫_0 ^𝛑 ln(cost)dt we can also  write this as −−  2J=∫_0 ^(𝛑/2) ln(cost)dt....(a)  so, 2J=∫_0 ^(𝛑/2) ln(sint)dt....(b)  (a)+(b) 4J=(𝛑/2)ln((1/2))+∫_0 ^(𝛑/2) ln(sin(2t))dt  by apply: the same approch like   eq^n  (v)we get,∫_0 ^(π/2) ln(sin2t)dt=2J   so,4J=(𝛑/2)ln((1/2))+2J  so ,2J=(𝛑/2)ln((1/2))  now from (g) I=J=(𝛑/4)ln((1/2))
\boldsymbolJI=0\boldsymbolπ2\boldsymbolln[\boldsymboltan(\boldsymbolπ4\boldsymbolx)]\boldsymboldx(\boldsymboli)\boldsymboland\boldsymbolalso\boldsymbolJI=0\boldsymbolπ2\boldsymbolln[\boldsymbolcot(\boldsymbolπ4\boldsymbolx)]\boldsymboldx(\boldsymbolii)(\boldsymboli)+(\boldsymbolii)\boldsymbolwe\boldsymbolget..\boldsymbolJI=0,\boldsymbolJ=\boldsymbolI.(\boldsymbolg)\boldsymbolnowJ+\boldsymbolI=0\boldsymbolπ2\boldsymbolln(\boldsymbolcos2\boldsymbolx)\boldsymboldx(\boldsymbolv)\boldsymbolnow2\boldsymbolx=\boldsymbolt,\boldsymbolthen2\boldsymbolJ=120\boldsymbolπ\boldsymbolln(\boldsymbolcost)\boldsymboldt\boldsymbolwe\boldsymbolcan\boldsymbolalso\boldsymbolwrite\boldsymbolthis\boldsymbolas2\boldsymbolJ=0\boldsymbolπ2\boldsymbolln(\boldsymbolcost)\boldsymboldt.(\boldsymbola)\boldsymbolso,2\boldsymbolJ=0\boldsymbolπ2\boldsymbolln(\boldsymbolsint)\boldsymboldt.(\boldsymbolb)(\boldsymbola)+(\boldsymbolb)4J=\boldsymbolπ2\boldsymbolln(12)+0\boldsymbolπ2\boldsymbolln(\boldsymbolsin(2\boldsymbolt))\boldsymboldt\boldsymbolby\boldsymbolapply:the\boldsymbolsame\boldsymbolapproch\boldsymbollike\boldsymboleq\boldsymboln(\boldsymbolv)\boldsymbolwe\boldsymbolget,0π2\boldsymbolln(\boldsymbolsin2\boldsymbolt)\boldsymboldt=2\boldsymbolJso,4\boldsymbolJ=\boldsymbolπ2\boldsymbolln(12)+2\boldsymbolJso,2\boldsymbolJ=\boldsymbolπ2ln(12)now\boldsymbolfrom(\boldsymbolg)\boldsymbolI=\boldsymbolJ=\boldsymbolπ4\boldsymbolln(12)
Commented by abdomathmax last updated on 02/Jun/20
thanks sir.
thankssir.
Commented by Sourav mridha last updated on 02/Jun/20
welcome....
Answered by mathmax by abdo last updated on 02/Jun/20
let f(a) =∫_0 ^(π/2)  ln(cosx +asinx)dx   we have f^′ (a) =∫_0 ^(π/2)  ((sinx)/(cosx +asinx))dx  =∫_0 ^(π/2)  (dx/(a +(1/(tanx)))) =_(tanx =u)      ∫_0 ^∞    (du/((1+u^2 )(a+(1/u)))) =∫_0 ^∞    ((udu)/((au+1)(u^2  +1)))  let decompose F(u) =(u/((au+1)(u^2  +1))) ⇒F(u) =(α/(au+1)) +((βu +λ)/(u^2  +1))  α =((−1)/(a((1/a^2 )+1))) =((−a^2 )/(a(1+a^2 ))) =((−a)/(1+a^2 ))  lim_(u→+∞)  uF(u) =0 =(α/a) +β ⇒β =−(α/a) =(1/(1+a^2 ))  F(0) =0 =α +λ ⇒λ =(a/(1+a^2 )) ⇒F(u) =−(a/((1+a^2 )(au+1))) +(1/(1+a^2 ))×((u+a)/(u^2  +1))  ⇒∫_0 ^∞  F(u)du =−(a/(1+a^2 ))∫_0 ^∞  (du/(au+1)) +(1/(2(1+a^2 )))∫_0 ^∞  ((2u)/(u^2  +1)) +(a/(1+a^2 )) ∫_0 ^∞  (du/(u^2  +1))  =(1/(1+a^2 ))[ln(√(u^2 +1))−ln(au+1)]_0 ^∞  +((πa)/(2(1+a^2 )))  =(1/(1+a^2 ))[ln(((√(1+u^2 ))/(au +1)))]_0 ^∞  +((πa)/(2(1+a^2 ))) =−((ln(a))/(1+a^2 )) +((πa)/(2(1+a^2 ))) ⇒  f(a) =−∫_0 ^a   ((lnt)/(1+t^2 ))dt +(π/4)ln(1+a^2 ) +c but  f(0) =c =−(π/2)ln(2) ⇒f(a) =(π/4)ln(1+a^2 )−(π/2)ln(2)−∫_0 ^a  ((lnt)/(1+t^2 ))dt  ∫_0 ^(π/2)  ln(cosx +sinx)dx =f(1) =(π/4)ln(2)−(π/2)ln(2)−∫_0 ^1  ((lnt)/(1+t^2 ))dt (→t =tanθ)  =−(π/4)ln(2)−∫_0 ^(π/2)  ln(tanθ)dθ =−(π/4)ln(2)−0 (because ∫_0 ^(π/2)  ln(cosθ)dθ=∫_0 ^(π/2) ln(sinθ)dθ)⇒  ⇒∫_0 ^(π/2)  ln(cosx −sinx)dx =−(π/4)ln(2)
letf(a)=0π2ln(cosx+asinx)dxwehavef(a)=0π2sinxcosx+asinxdx=0π2dxa+1tanx=tanx=u0du(1+u2)(a+1u)=0udu(au+1)(u2+1)letdecomposeF(u)=u(au+1)(u2+1)F(u)=αau+1+βu+λu2+1α=1a(1a2+1)=a2a(1+a2)=a1+a2limu+uF(u)=0=αa+ββ=αa=11+a2F(0)=0=α+λλ=a1+a2F(u)=a(1+a2)(au+1)+11+a2×u+au2+10F(u)du=a1+a20duau+1+12(1+a2)02uu2+1+a1+a20duu2+1=11+a2[lnu2+1ln(au+1)]0+πa2(1+a2)=11+a2[ln(1+u2au+1)]0+πa2(1+a2)=ln(a)1+a2+πa2(1+a2)f(a)=0alnt1+t2dt+π4ln(1+a2)+cbutf(0)=c=π2ln(2)f(a)=π4ln(1+a2)π2ln(2)0alnt1+t2dt0π2ln(cosx+sinx)dx=f(1)=π4ln(2)π2ln(2)01lnt1+t2dt(t=tanθ)=π4ln(2)0π2ln(tanθ)dθ=π4ln(2)0(because0π2ln(cosθ)dθ=0π2ln(sinθ)dθ)0π2ln(cosxsinx)dx=π4ln(2)
Commented by mathmax by abdo last updated on 02/Jun/20
error of typo  ∫_0 ^(π/2) ln(cosx +sinx)dx =−(π/4)ln2
erroroftypo0π2ln(cosx+sinx)dx=π4ln2erroroftypo0π2ln(cosx+sinx)dx=π4ln2

Leave a Reply

Your email address will not be published. Required fields are marked *