calculatelim-n-0-1-x-n-n-ln-1-2x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 100514 by mathmax by abdo last updated on 27/Jun/20 calculatelimn→+∞∫0∞(1−xn)nln(1+2x)dx Answered by mathmax by abdo last updated on 27/Jun/20 An=∫0∞(1−xn)nln(2x+1)dx=∫R(1−xn)nln(2x+1)χ[0,+∞[(x)dx=∫Rfn(x)dxwithfn(x)=(1−xn)nln(2x+1)fn→csf(x)=e−xln(2x+1)and∣fn∣⩽f(x)integrableon[0,+∞[tbeoremofconvegencedomineegivelimn→+∞An=∫0∞e−xln(2x+1)dx=LbypartsL=[−e−xln(2x+1)]0+∞+∫0∞e−x22x+1dx=2∫0∞e−x2x+1dx=2x+1=t2∫1+∞e−(t−12)t×dt2=e∫1+∞e−t2tdt…becontinued… Answered by maths mind last updated on 28/Jun/20 e−x⩾1−x⇔,x>0e−x−1x⩾−1…truebymeanvalutthf(t)=e−tover[0,x]x>0∃c∈[0,x]⇒e−x−1x=−e−c⩾−1⇒e−xn⩾1−xn⇒(1−xn)nln(1+2x)⩽e−xln(1+2x)∫0+∞e−xln(1+2x)dx<∞true⇒convergencetheorem⇒limn→∞∫0∞(1−xn)nln(1+2x)dx=∫0+∞limn→∞(1−xn)nln(1+2x)dx=∫0+∞e−xln(1+2x)dx[−e−xln(1+2x)]+∫0+∞e−x1+2xdx=∫0+∞e−x1+2xdx=∫1+∞e−(u−12)2udu=e2∫1+∞e−u22udu=e2∫12+∞e−t2t=e4∫12+∞e−ttdt=e4E(12) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-x-n-x-2-x-1-n-dx-with-n-integr-and-n-2-Next Next post: lim-x-1-nx-n-1-n-1-x-n-1-e-x-e-sin-pix- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.