Menu Close

calculatelim-x-0-x-sinx-sinx-x-x-




Question Number 32517 by abdo imad last updated on 26/Mar/18
calculatelim_(x→0^+ )   ((x^(sinx)   −(sinx)^x )/x) .
calculatelimx0+xsinx(sinx)xx.
Commented by abdo imad last updated on 27/Mar/18
we have x^(sinx)  = e^(sinx ln(x))  but sinx ∼ x −(x^3 /6)  e^(sinxln(x))  ∼ e^((x−(x^3 /6))lnx)  ∼ 1+(x−(x^3 /6))lnx  (sinx)^x  =e^(xln(sinx))  ∼ e^(xln(x−(x^3 /3)))  =e^(xlnx +xln(1−(x^2 /3)))   ∼ e^(xlnx)  e^(−(x^3 /3))  ∼ e^(xlnx)  (1−(x^3 /3))∼ ⇒  ((x^(sinx)  −(sinx)^x )/x)  ∼  ((1+(x−(x^3 /6))lnx −e^(xlnx)  +(x^3 /3) e^(xlnx) )/x)  ∼ (x^2 /3) e_(x→0^+ ) ^(xln(x))  →0  .
wehavexsinx=esinxln(x)butsinxxx36esinxln(x)e(xx36)lnx1+(xx36)lnx(sinx)x=exln(sinx)exln(xx33)=exlnx+xln(1x23)exlnxex33exlnx(1x33)xsinx(sinx)xx1+(xx36)lnxexlnx+x33exlnxxx23ex0+xln(x)0.

Leave a Reply

Your email address will not be published. Required fields are marked *