Menu Close

calculer-la-primitive-de-t-2-1-t-2-2-dt-




Question Number 166182 by SANOGO last updated on 14/Feb/22
calculer la primitive de  ∫(t^2 /((1+t^2 )^2 ))dt
calculerlaprimitivedet2(1+t2)2dt
Answered by greogoury55 last updated on 14/Feb/22
t=tan u  Y=∫((tan^2 u)/((1+tan^2 u)^2 )) sec^2 u du  Y=∫ ((tan^2 u)/(sec^4 u)) sec^2 u du  Y=∫ ((tan^2 u)/(sec^2 u)) du=∫ sin^2 u du  Y=∫((1−cos 2u)/2) du =((u−(1/2)sin 2u)/2)+c  Y=(1/2)arctan (t)− (t/(2t^2 +2)) +c
t=tanuY=tan2u(1+tan2u)2sec2uduY=tan2usec4usec2uduY=tan2usec2udu=sin2uduY=1cos2u2du=u12sin2u2+cY=12arctan(t)t2t2+2+c
Commented by SANOGO last updated on 14/Feb/22
merci
merci
Answered by MJS_new last updated on 15/Feb/22
∫(t^2 /((t^2 +1)^2 ))dt=       [Ostrogradski′s Method]  =−(t/(2(t^2 +1)))+(1/2)∫(dt/(t^2 +1))=  =−(t/(2(t^2 +1)))+(1/2)arctan t +C
t2(t2+1)2dt=[OstrogradskisMethod]=t2(t2+1)+12dtt2+1==t2(t2+1)+12arctant+C

Leave a Reply

Your email address will not be published. Required fields are marked *