Menu Close

calculer-la-somme-n-1-oo-1-n-n-2-x-n-




Question Number 166291 by SANOGO last updated on 17/Feb/22
calculer la somme  Σ_(n=1) ^(+oo)  (1/(n(n+2)))x^n
calculerlasomme+oon=11n(n+2)xn
Answered by TheSupreme last updated on 18/Feb/22
Σ=a_n x^n   ρ=lim_n  (a_n /a_(n+1) )=1  ∣x∣≤1    Σ=(1/2)Σ_n ((1/n)−(1/(n+2)))x^n   Σ=(1/2)Σ(x^n /n)−(1/2)Σ(x^n /(n+2))  Σ(x^n /n)=Σ∫x^(n−1) dx=∫Σx^(n−1) =∫(1/(1−x))dx=−ln∣1−x∣  Σ(x^n /(n+2))=(1/x^2 )Σ(x^(n+2) /(n+2))=Σ∫x^(n+1) dx=∫Σx^(n+1) dx=∫((1/(1−x))−1−x)dx  −ln∣1−x∣−x−(x^2 /2)  Σ(x^n /(n(n+2)))=(1/2)((x^2 /2)+x)
Σ=anxnρ=limnanan+1=1x∣⩽1Σ=12n(1n1n+2)xnΣ=12Σxnn12Σxnn+2Σxnn=Σxn1dx=Σxn1=11xdx=ln1xΣxnn+2=1x2Σxn+2n+2=Σxn+1dx=Σxn+1dx=(11x1x)dxln1xxx22Σxnn(n+2)=12(x22+x)
Commented by SANOGO last updated on 18/Feb/22
merci bien
mercibien

Leave a Reply

Your email address will not be published. Required fields are marked *