Menu Close

calculer-la-somme-n-1-oo-1-n-n-2-x-n-




Question Number 166291 by SANOGO last updated on 17/Feb/22
calculer la somme  Σ_(n=1) ^(+oo)  (1/(n(n+2)))x^n
$${calculer}\:{la}\:{somme} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{+{oo}} {\sum}}\:\frac{\mathrm{1}}{{n}\left({n}+\mathrm{2}\right)}{x}^{{n}} \\ $$
Answered by TheSupreme last updated on 18/Feb/22
Σ=a_n x^n   ρ=lim_n  (a_n /a_(n+1) )=1  ∣x∣≤1    Σ=(1/2)Σ_n ((1/n)−(1/(n+2)))x^n   Σ=(1/2)Σ(x^n /n)−(1/2)Σ(x^n /(n+2))  Σ(x^n /n)=Σ∫x^(n−1) dx=∫Σx^(n−1) =∫(1/(1−x))dx=−ln∣1−x∣  Σ(x^n /(n+2))=(1/x^2 )Σ(x^(n+2) /(n+2))=Σ∫x^(n+1) dx=∫Σx^(n+1) dx=∫((1/(1−x))−1−x)dx  −ln∣1−x∣−x−(x^2 /2)  Σ(x^n /(n(n+2)))=(1/2)((x^2 /2)+x)
$$\Sigma={a}_{{n}} {x}^{{n}} \\ $$$$\rho={li}\underset{{n}} {{m}}\:\frac{{a}_{{n}} }{{a}_{{n}+\mathrm{1}} }=\mathrm{1} \\ $$$$\mid{x}\mid\leqslant\mathrm{1} \\ $$$$ \\ $$$$\Sigma=\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}} {\sum}\left(\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{2}}\right){x}^{{n}} \\ $$$$\Sigma=\frac{\mathrm{1}}{\mathrm{2}}\Sigma\frac{{x}^{{n}} }{{n}}−\frac{\mathrm{1}}{\mathrm{2}}\Sigma\frac{{x}^{{n}} }{{n}+\mathrm{2}} \\ $$$$\Sigma\frac{{x}^{{n}} }{{n}}=\Sigma\int{x}^{{n}−\mathrm{1}} {dx}=\int\Sigma{x}^{{n}−\mathrm{1}} =\int\frac{\mathrm{1}}{\mathrm{1}−{x}}{dx}=−{ln}\mid\mathrm{1}−{x}\mid \\ $$$$\Sigma\frac{{x}^{{n}} }{{n}+\mathrm{2}}=\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\Sigma\frac{{x}^{{n}+\mathrm{2}} }{{n}+\mathrm{2}}=\Sigma\int{x}^{{n}+\mathrm{1}} {dx}=\int\Sigma{x}^{{n}+\mathrm{1}} {dx}=\int\left(\frac{\mathrm{1}}{\mathrm{1}−{x}}−\mathrm{1}−{x}\right){dx} \\ $$$$−{ln}\mid\mathrm{1}−{x}\mid−{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\Sigma\frac{{x}^{{n}} }{{n}\left({n}+\mathrm{2}\right)}=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+{x}\right) \\ $$
Commented by SANOGO last updated on 18/Feb/22
merci bien
$${merci}\:{bien} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *