Menu Close

calculste-0-1-e-zx-x-dx-with-z-from-C-and-Re-z-gt-0-




Question Number 90291 by mathmax by abdo last updated on 22/Apr/20
calculste ∫_0 ^∞  ((1−e^(zx) )/x)dx  with z from C and Re(z)>0
calculste01ezxxdxwithzfromCandRe(z)>0
Commented by mathmax by abdo last updated on 22/Apr/20
sorry Re(z)<0 .
sorryRe(z)<0.
Commented by mathmax by abdo last updated on 23/Apr/20
let f(z) =∫_0 ^∞  ((1−e^(zx) )/x)dx ⇒f^′ (z) =∫_0 ^∞ (∂/∂z)(((1−e^(zx) )/x))dx  =−∫_0 ^∞  e^(zx)  dx =−[(1/z)e^(zx) ]_0 ^(+∞)   =−(1/z)(−1)=(1/z)  (Rez<0) ⇒  f(z) =lnz +K  so if z =α+iβ     (α<0) ⇒z =(√(α^2  +β^2 ))e^(iarctan((β/α)))  ⇒  ln(z) =(1/2)ln(α^2  +β^2 ) +iarctan((β/α)) ⇒  f(z)=(1/2)ln(α^2  +β^2 )+iarctan((β/α))+K  rest to find  K
letf(z)=01ezxxdxf(z)=0z(1ezxx)dx=0ezxdx=[1zezx]0+=1z(1)=1z(Rez<0)f(z)=lnz+Ksoifz=α+iβ(α<0)z=α2+β2eiarctan(βα)ln(z)=12ln(α2+β2)+iarctan(βα)f(z)=12ln(α2+β2)+iarctan(βα)+KresttofindK

Leave a Reply

Your email address will not be published. Required fields are marked *