Question Number 90044 by abdomathmax last updated on 21/Apr/20
$${calculste}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{sin}\left(\left[\mathrm{2}{x}\right]\:−\left[\frac{\mathrm{1}}{{x}}\right]\right){dx} \\ $$
Commented by mathmax by abdo last updated on 24/Apr/20
$${I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:{sin}\left(\left[\mathrm{2}{x}\right]−\left[\frac{\mathrm{1}}{{x}}\right]\right){dx}\:\Rightarrow{I}=_{{x}=\frac{\mathrm{1}}{{t}}} \:\:\int_{\mathrm{1}} ^{\infty} \:{sin}\left(\left[\frac{\mathrm{2}}{{t}}\right]−\left[{t}\right]\right)\frac{{dt}}{{t}^{\mathrm{2}} } \\ $$$$=\int_{\mathrm{1}} ^{\mathrm{2}} \:{sin}\left(\left[\frac{\mathrm{2}}{{t}}\right]−\left[{t}\right]\right)\frac{{dt}}{{t}^{\mathrm{2}} }\:+\int_{\mathrm{2}} ^{+\infty} \frac{\mathrm{1}}{{t}^{\mathrm{2}} }\:{sin}\left(\left[\frac{\mathrm{2}}{{t}}\right]−\left[{t}\right]\right){dt} \\ $$$$\mathrm{1}\leqslant{t}<\mathrm{2}\:\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}<\frac{\mathrm{1}}{{t}}<\mathrm{1}\:\Rightarrow\mathrm{1}<\frac{\mathrm{2}}{{t}}<\mathrm{2}\:\Rightarrow\left[\frac{\mathrm{2}}{{t}}\right]=\mathrm{1}\:{also}\left[{t}\right]=\mathrm{1}\:\Rightarrow \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}} \:{sin}\left(\left[\frac{\mathrm{2}}{{t}}\right]−\left[{t}\right]\right)\frac{{dt}}{{t}^{\mathrm{2}} }=\mathrm{0}\:\Rightarrow\:{I}\:=\int_{\mathrm{2}} ^{+\infty} \:\frac{\mathrm{1}}{{t}^{\mathrm{2}} }{sin}\left(\left[\frac{\mathrm{2}}{{t}}\right]−\left[{t}\right]\right){dt} \\ $$$${t}>\mathrm{2}\:\Rightarrow\mathrm{0}<\frac{\mathrm{1}}{{t}}<\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\mathrm{0}<\frac{\mathrm{2}}{{t}}<\mathrm{1}\:\Rightarrow\left[\frac{\mathrm{2}}{{t}}\right]=\mathrm{0}\:\Rightarrow{I}\:=−\int_{\mathrm{2}} ^{+\infty} \:\frac{{sin}\left[{t}\right]}{{t}^{\mathrm{2}} }{dt} \\ $$$$=−\sum_{{k}=\mathrm{2}} ^{\infty} \:\int_{{k}} ^{{k}+\mathrm{1}} \:\frac{{sink}}{{t}^{\mathrm{2}} }{dt}\:=−\sum_{{k}=\mathrm{2}} ^{\infty} \:{sink}\left[−\frac{\mathrm{1}}{{t}}\right]_{{k}} ^{{k}+\mathrm{1}} \\ $$$$=\sum_{{k}=\mathrm{2}} ^{\infty} \:{sink}\left(\frac{\mathrm{1}}{{k}+\mathrm{1}}−\frac{\mathrm{1}}{{k}}\right)\:=\sum_{{k}=\mathrm{2}} ^{\infty} \:\frac{{sink}}{{k}+\mathrm{1}}−\sum_{{k}=\mathrm{2}} ^{\infty} \:\frac{{sink}}{{k}} \\ $$$$\sum_{{k}=\mathrm{2}} ^{\infty} \:\frac{{sink}}{{k}}\:={Im}\left(\sum_{{k}=\mathrm{1}} ^{\infty} \:\frac{{e}^{{ik}} }{{k}}\right)−{sin}\left(\mathrm{1}\right) \\ $$$${let}\:{w}\left({z}\right)=\sum_{{k}=\mathrm{1}} ^{\infty} \:\frac{{z}^{{k}} }{{k}}\:\Rightarrow{w}^{'} \left({x}\right)\:=\sum_{{k}=\mathrm{1}} ^{\infty} \:{z}^{{k}−\mathrm{1}} \:=\sum_{{k}=\mathrm{0}} ^{\infty} \:{z}^{{k}} \:=\frac{\mathrm{1}}{\mathrm{1}−{z}}\:\:\left(\mid{z}\mid<\mathrm{1}\right) \\ $$$${w}\left({z}\right)\:=\int_{\mathrm{0}} ^{{z}} \:\frac{{dt}}{\mathrm{1}−{t}}\:+{k}\:\:{k}={w}\left(\mathrm{0}\right)\:=\mathrm{0}\:\Rightarrow{w}\left({z}\right)=−{ln}\left(\mathrm{1}−{z}\right) \\ $$$$\sum_{{k}=\mathrm{1}} ^{\infty} \:\frac{{e}^{{ik}} }{{k}}\:=−{ln}\left(\mathrm{1}−{e}^{{i}} \right)\:=−{ln}\left(\mathrm{1}−{cos}\left(\mathrm{1}\right)−{isin}\left(\mathrm{1}\right)\right) \\ $$$$=−{ln}\left(\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)−\mathrm{2}{isin}\left(\frac{\mathrm{1}}{\mathrm{2}}\right){cos}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$$$=−{ln}\left(−{isin}\left(\frac{\mathrm{1}}{\mathrm{2}}\right){e}^{\frac{{i}}{\mathrm{2}}} \right)\:=−{ln}\left(−{i}\right)−{ln}\left({sin}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right)−\frac{{i}}{\mathrm{2}} \\ $$$$=−{ln}\left({e}^{−\frac{{i}\pi}{\mathrm{2}}} \right)−\frac{{i}}{\mathrm{2}}−{ln}\left({sin}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$$$=\frac{{i}\pi}{\mathrm{2}}−\frac{{i}}{\mathrm{2}}\:\Rightarrow\sum_{{k}=\mathrm{2}} ^{\infty} \:\frac{{sink}}{{k}}\:=\frac{\pi−\mathrm{1}}{\mathrm{2}}\:−{sin}\left(\mathrm{1}\right)\:{we}\:{follow}\:{the}\:{same}\:{for} \\ $$$$\sum_{{k}=\mathrm{2}} ^{\infty} \:\frac{{sink}}{{k}+\mathrm{1}}… \\ $$
Commented by mathmax by abdo last updated on 24/Apr/20
$${sorry}\:\:\sum_{{k}=\mathrm{1}} ^{\infty} \:\frac{{e}^{{ik}} }{{k}}\:=\frac{{i}\pi}{\mathrm{2}}−\frac{{i}}{\mathrm{2}}−{ln}\left(\mathrm{2}\right)… \\ $$