Menu Close

calculste-0-ln-x-x-2-x-1-dx-




Question Number 108750 by mathmax by abdo last updated on 19/Aug/20
calculste ∫_0 ^∞   ((ln(x))/(x^2 −x+1))dx
calculste0ln(x)x2x+1dx
Answered by mnjuly1970 last updated on 19/Aug/20
 sol....: put : x=(1/t)⇒Ω= ∫_0 ^( ∞) ((ln(x))/(x^2 −x+1)) dx=−Ω  2Ω=0 ⇒Ω=∫_0 ^( ∞) ((ln(x))/(1−x+x^2 )) dx =0                  .....M.N.....
sol.:put:x=1tΩ=0ln(x)x2x+1dx=Ω2Ω=0Ω=0ln(x)1x+x2dx=0..M.N..
Answered by mathmax by abdo last updated on 19/Aug/20
if q is a fraction with no real poles we have  ∫_0 ^∞ q(x)lnx dx =−(1/2)Re(Σ_i  Re( q(z)ln^2 z,a_i ) let use this  we have q(z)ln^2 z =((ln^2 z)/(z^2 −z+1)) =w(z) poles?  z^2 −z+1 =0 →Δ =−3 ⇒z_1 =((1+i(√3))/2) =e^((i2π)/3)  and z_2 =((1−i(√3))/2) =e^(−((i2π)/3))   w(z) =((ln^2 z)/((z−z_1 )(z−z_2 ))) ⇒Res(w,z_1 ) =((ln^2 (z_1 ))/(z_1 −z_2 )) =((ln^2 (e^((i2π)/3) ))/(i(√3)))  =(1/(i(√3)))(((i2π)/3))^2  =((−4π^2 )/(3i(√3)))  also Res(w,z_2 ) =((ln^2 (z_2 ))/(z_2 −z_1 )) =((4π^2 )/(3i(√3))) ⇒  Σ Re(q(z)ln^2 (z),a_i )=0 ⇒∫_0 ^∞  ((ln(x))/(x^2 −x+1))dx =0
ifqisafractionwithnorealpoleswehave0q(x)lnxdx=12Re(iRe(q(z)ln2z,ai)letusethiswehaveq(z)ln2z=ln2zz2z+1=w(z)poles?z2z+1=0Δ=3z1=1+i32=ei2π3andz2=1i32=ei2π3w(z)=ln2z(zz1)(zz2)Res(w,z1)=ln2(z1)z1z2=ln2(ei2π3)i3=1i3(i2π3)2=4π23i3alsoRes(w,z2)=ln2(z2)z2z1=4π23i3ΣRe(q(z)ln2(z),ai)=00ln(x)x2x+1dx=0

Leave a Reply

Your email address will not be published. Required fields are marked *