calculste-0-ln-x-x-2-x-1-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 108750 by mathmax by abdo last updated on 19/Aug/20 calculste∫0∞ln(x)x2−x+1dx Answered by mnjuly1970 last updated on 19/Aug/20 sol….:put:x=1t⇒Ω=∫0∞ln(x)x2−x+1dx=−Ω2Ω=0⇒Ω=∫0∞ln(x)1−x+x2dx=0…..M.N….. Answered by mathmax by abdo last updated on 19/Aug/20 ifqisafractionwithnorealpoleswehave∫0∞q(x)lnxdx=−12Re(∑iRe(q(z)ln2z,ai)letusethiswehaveq(z)ln2z=ln2zz2−z+1=w(z)poles?z2−z+1=0→Δ=−3⇒z1=1+i32=ei2π3andz2=1−i32=e−i2π3w(z)=ln2z(z−z1)(z−z2)⇒Res(w,z1)=ln2(z1)z1−z2=ln2(ei2π3)i3=1i3(i2π3)2=−4π23i3alsoRes(w,z2)=ln2(z2)z2−z1=4π23i3⇒ΣRe(q(z)ln2(z),ai)=0⇒∫0∞ln(x)x2−x+1dx=0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-108748Next Next post: BeMath-x-1-x-x-x-x-1-x-x-2-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.