Question Number 90041 by abdomathmax last updated on 21/Apr/20
$${calculste}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{xarctan}\left(\mathrm{2}{x}\right)}{\mathrm{9}+\mathrm{2}{x}^{\mathrm{2}} }{dx}\: \\ $$
Answered by mathmax by abdo last updated on 23/Apr/20
$${sorry}\:{Q}\:{is}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{xactan}\left(\mathrm{2}{x}\right)}{\mathrm{9}+{x}^{\mathrm{4}} }{dx} \\ $$
Commented by mathmax by abdo last updated on 24/Apr/20
$${A}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{xarctan}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{4}} +\mathrm{9}}\:\Rightarrow{A}\:=_{{x}=^{\mathrm{4}} \sqrt{\mathrm{9}}{t}} \:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\left(^{\mathrm{4}} \sqrt{\mathrm{9}}\right){t}\:{arctan}\left(\mathrm{2}\left(^{\mathrm{4}} \sqrt{\mathrm{9}}\right){t}\right)}{\mathrm{9}\left({t}^{\mathrm{4}} \:+\mathrm{1}\right)} \\ $$$${let}\:\lambda_{\mathrm{0}} =^{\mathrm{4}} \sqrt{\mathrm{9}}\:\Rightarrow\mathrm{2}{A}\:=\frac{\mathrm{1}}{\lambda_{\mathrm{0}} ^{\mathrm{3}} }\:\int_{−\infty} ^{+\infty} \:\:\frac{{t}\:{arctan}\left(\mathrm{2}\lambda_{{o}} {t}\right)}{{t}^{\mathrm{4}} \:+\mathrm{1}}\:\Rightarrow \\ $$$$\mathrm{2}\lambda_{\mathrm{0}} ^{\mathrm{3}} \:{A}\:=\int_{−\infty} ^{+\infty} \:\:\frac{{t}\:{arctan}\left(\mathrm{2}\lambda_{\mathrm{0}} {t}\right)}{{t}^{\mathrm{4}} \:+\mathrm{1}}\:\:\:{let}\:\varphi\left({z}\right)\:=\frac{{z}\:{arctan}\left(\mathrm{2}\lambda_{{o}} {z}\right)}{{z}^{\mathrm{4}} \:+\mathrm{1}} \\ $$$$\Rightarrow\varphi\left({z}\right)\:=\frac{{z}\:{arctan}\left(\mathrm{2}\lambda_{\mathrm{0}} {z}\right)}{\left({z}^{\mathrm{2}} −{i}\right)\left({z}^{\mathrm{2}} \:+{i}\right)}\:=\frac{{z}\:{arctan}\left(\mathrm{2}\lambda_{\mathrm{0}} {z}\right)}{\left({z}−\sqrt{{i}}\right)\left({z}+\sqrt{{i}}\right)\left({z}−\sqrt{−{i}}\right)\left({z}+\sqrt{−{i}}\right)} \\ $$$$=\frac{{z}\:{arctan}\left(\mathrm{2}\lambda_{\mathrm{0}} {z}\right)}{\left({z}−{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}+{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}+{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\:{Res}\left(\varphi,{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)+{Res}\left(\varphi,−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\right\} \\ $$$${Res}\left(\varphi,{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\:=\frac{{e}^{\frac{{i}\pi}{\mathrm{4}}} \:{arctan}\left(\mathrm{2}\lambda_{\mathrm{0}} {e}^{\frac{{i}\pi}{\mathrm{4}}} \right)}{\mathrm{2}{e}^{\frac{{i}\pi}{\mathrm{4}}} \left(\mathrm{2}{i}\right)}\:=\frac{\mathrm{1}}{\mathrm{4}{i}}\:{arctan}\left(\mathrm{2}\lambda_{\mathrm{0}} {e}^{\frac{{i}\pi}{\mathrm{4}}} \right) \\ $$$${Res}\left(\varphi,−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\:=\frac{{e}^{−\frac{{i}\pi}{\mathrm{4}}} \:{arctan}\left(\mathrm{2}\lambda_{\mathrm{0}} {e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)}{−\left(\mathrm{2}{i}\right)\left(−\mathrm{2}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}{i}}\:{arctan}\left(\mathrm{2}\lambda_{\mathrm{0}} {e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\:\frac{\mathrm{1}}{\mathrm{4}{i}}\:{arctan}\left(\mathrm{2}\lambda_{\mathrm{0}} {e}^{\frac{{i}\pi}{\mathrm{4}}} \right)+\frac{\mathrm{1}}{\mathrm{4}{i}}\:{arctan}\left(\mathrm{2}\lambda_{\mathrm{0}} {e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\right\} \\ $$$$=\frac{\pi}{\mathrm{2}}\left\{\:{arctan}\left(\mathrm{2}\lambda_{\mathrm{0}} {e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\:+{arctan}\left(\mathrm{2}\lambda_{\mathrm{0}} {e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\right\}\:\:{we}\:{have} \\ $$$${arctan}\left({z}\right)\:=\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(\frac{\mathrm{1}+{iz}}{\mathrm{1}−{iz}}\right) \\ $$$${arctan}\left(\mathrm{2}\lambda_{\mathrm{0}} {e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\:=\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(\frac{\mathrm{1}+\mathrm{2}{i}\lambda_{\mathrm{0}} {e}^{\frac{{i}\pi}{\mathrm{4}}} }{\mathrm{1}−\mathrm{2}{i}\lambda_{\mathrm{0}} {e}^{\frac{{i}\pi}{\mathrm{4}}} }\right)\:{let}\:{simplify} \\ $$$$\mathrm{1}+\mathrm{2}{i}\lambda_{\mathrm{0}} {e}^{\frac{{i}\pi}{\mathrm{4}}} \:=\mathrm{1}+\mathrm{2}{i}\lambda_{\mathrm{0}} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:+\frac{{i}}{\:\sqrt{\mathrm{2}}}\right)\:=\mathrm{1}+{i}\lambda_{\mathrm{0}} \sqrt{\mathrm{2}}−\lambda_{\mathrm{0}} \sqrt{\mathrm{2}} \\ $$$$=\mathrm{1}−\lambda_{\mathrm{0}} \sqrt{\mathrm{2}}\:+{i}\lambda_{\mathrm{0}} \sqrt{\mathrm{2}}\:=\sqrt{\left(\mathrm{1}−\lambda_{\mathrm{0}} \sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{2}\lambda_{\mathrm{0}} ^{\mathrm{2}} }\:{e}^{{iarctan}\left(\frac{\lambda_{\mathrm{0}} \sqrt{\mathrm{2}}}{\mathrm{1}−\lambda_{\mathrm{0}} \sqrt{\mathrm{2}}}\right)\:} \Rightarrow \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(\mathrm{1}+\mathrm{2}{i}\lambda_{\mathrm{0}} {e}^{\frac{{i}\pi}{\mathrm{4}}} \right)=\frac{\mathrm{1}}{\mathrm{2}{i}}\left\{\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\sqrt{\left(\mathrm{1}−\lambda_{\mathrm{0}} \sqrt{\mathrm{2}}\right)^{\mathrm{2}} \:+\mathrm{2}\lambda_{\mathrm{0}} ^{\mathrm{2}} }\right)+{iarctan}\left(\frac{\lambda_{\mathrm{0}} \sqrt{\mathrm{2}}}{\mathrm{1}−\lambda_{\mathrm{0}} \sqrt{\mathrm{2}}}\right)\right\} \\ $$$$\mathrm{1}−\mathrm{2}{i}\lambda_{\mathrm{0}} {e}^{\frac{{i}\pi}{\mathrm{4}}} \:=\mathrm{1}−\mathrm{2}{i}\lambda_{\mathrm{0}} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:+\frac{{i}}{\:\sqrt{\mathrm{2}}}\right)=−\mathrm{1}−{i}\lambda_{\mathrm{0}} \sqrt{\mathrm{2}}+\lambda_{\mathrm{0}} \sqrt{\mathrm{2}} \\ $$$$=\sqrt{\left(−\mathrm{1}+\lambda_{\mathrm{0}} \sqrt{\mathrm{2}}\right)^{\mathrm{2}} \:+\mathrm{2}\lambda_{\mathrm{0}} ^{\mathrm{2}} }\:{e}^{{iarctan}\left(\frac{\left.−\lambda_{\mathrm{0}} \sqrt{\mathrm{2}}\right)}{−\mathrm{1}+\lambda_{\mathrm{0}} \sqrt{\mathrm{2}}}\right)} \\ $$$$=\sqrt{\left(\lambda_{\mathrm{0}} \sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2}\lambda_{\mathrm{0}} ^{\mathrm{2}} }\:{e}^{{iarctan}\left(\frac{\lambda_{\mathrm{0}} \sqrt{\mathrm{2}}}{\mathrm{1}−\lambda_{\mathrm{0}} \sqrt{\mathrm{2}}}\right)} \:\:\:…{be}\:{continued}…. \\ $$