Question Number 39787 by abdo mathsup 649 cc last updated on 10/Jul/18
$${calculste}\:\:{I}_{\lambda} \:=\:\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left(\lambda{x}^{{n}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:\:{with} \\ $$$$\lambda\:{from}\:{R}\:{and}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{vslue}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left(\mathrm{3}\:{x}^{\mathrm{9}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:. \\ $$
Commented by abdo mathsup 649 cc last updated on 11/Jul/18
$$\left.\mathrm{1}\right)\:\:{we}\:{have}\:{I}_{\lambda} =\:{Re}\left(\:\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{{i}\lambda{x}^{{n}} } }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\right)\:\:{let} \\ $$$$\varphi\left({z}\right)\:=\:\frac{{e}^{{i}\lambda{z}^{{n}} } }{\mathrm{1}+{z}^{\mathrm{2}} } \\ $$$$\varphi\left({z}\right)=\:\frac{{e}^{{i}\lambda{z}^{{n}} } }{\left({z}−{i}\right)\left({z}+{i}\right)}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{i}\right) \\ $$$${Res}\left(\varphi,{i}\right)\:={lim}_{{z}\rightarrow{i}} \left({z}−{i}\right)\varphi\left({z}\right) \\ $$$$={lim}_{{z}\rightarrow{i}} \:\frac{{e}^{{i}\lambda{z}^{{n}} } }{{z}+{i}}\:=\:\frac{{e}^{\lambda\:{i}^{{n}+\mathrm{1}} } }{\mathrm{2}{i}}\:=\frac{{e}^{\lambda\left\{{cos}\left(\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{2}}\:+{isin}\left(\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{2}}\right)\right\}\right.} }{\mathrm{2}{i}} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{e}^{\lambda{cos}\left(\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{2}}\right)} \frac{\left.{cos}\right)\left(\lambda{sin}\left(\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{2}}\right)\right)\:\:+{isin}\left(\lambda{sin}\left(\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{2}}\right)\right)}{\mathrm{2}{i}} \\ $$$$\Rightarrow{I}_{\lambda} =\:\pi\:\:{e}^{\lambda\:{cos}\left(\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{2}}\right)} \:{cos}\left\{\lambda{sin}\left(\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{2}}\right)\right\}\:. \\ $$
Commented by math khazana by abdo last updated on 12/Jul/18
$$\left.\mathrm{2}\right)\:{let}\:{take}\:\lambda=\mathrm{3}\:{and}\:{n}=\mathrm{9}\:{we}\:{get} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\mathrm{3}{x}^{\mathrm{9}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:=\pi{e}^{\mathrm{3}{cos}\left(\mathrm{5}\pi\right)} \:{cos}\left\{\mathrm{3}\:{sin}\left(\mathrm{5}\pi\right)\right\} \\ $$$$=\:\pi\:{e}^{−\mathrm{3}} \:\:=\frac{\pi}{{e}^{\mathrm{3}} }\:\:. \\ $$$$ \\ $$