Menu Close

calculus-0-1-ln-x-2-ln-ln-x-dx-




Question Number 128471 by mnjuly1970 last updated on 07/Jan/21
                 ...  calculus ...         Φ=^? ∫_0 ^( 1) (ln(x))^2 ln((√(−ln(x))) dx
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:\:{calculus}\:… \\ $$$$\:\:\:\:\:\:\:\Phi\overset{?} {=}\int_{\mathrm{0}} ^{\:\mathrm{1}} \left({ln}\left({x}\right)\right)^{\mathrm{2}} {ln}\left(\sqrt{−{ln}\left({x}\right)}\:{dx}\right. \\ $$
Answered by Dwaipayan Shikari last updated on 07/Jan/21
∫_(−∞) ^0 t^2 log((√(−t)))e^t  dt      t=−u       logx=t  =(1/2)∫_0 ^∞ u^2 log(u)e^(−u) =(1/2)Γ′(3)=(1/2)Γ(3)ψ(3)=−γ+(3/2)
$$\int_{−\infty} ^{\mathrm{0}} {t}^{\mathrm{2}} {log}\left(\sqrt{−{t}}\right){e}^{{t}} \:{dt}\:\:\:\:\:\:{t}=−{u}\:\:\:\:\:\:\:{logx}={t} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} {u}^{\mathrm{2}} {log}\left({u}\right){e}^{−{u}} =\frac{\mathrm{1}}{\mathrm{2}}\Gamma'\left(\mathrm{3}\right)=\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\mathrm{3}\right)\psi\left(\mathrm{3}\right)=−\gamma+\frac{\mathrm{3}}{\mathrm{2}} \\ $$
Commented by mnjuly1970 last updated on 07/Jan/21
  thank you so much...
$$\:\:{thank}\:{you}\:{so}\:{much}… \\ $$
Answered by mnjuly1970 last updated on 07/Jan/21
  ::  −ln(x)=t      Φ=(1/2)∫_0 ^( ∞) t^2 ln(t)e^(−t) dt           =(1/2)[L (t^2 ln(t))]_(s=1) =(1/2) ∗((d^2 (((−γ−ln(s))/s)))/ds^2 )     =(1/2) ∗(d/ds)(((−1+γ+ln(s))/s^2 ))  =(1/2)∗(((s−2s(−1+γ+ln(s)))/s^4 ))∣_(s=1)    =(1/2)(3−2γ)=(3/2)−γ    ....
$$\:\:::\:\:−{ln}\left({x}\right)={t} \\ $$$$\:\:\:\:\Phi=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} {t}^{\mathrm{2}} {ln}\left({t}\right){e}^{−{t}} {dt} \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left[\mathscr{L}\:\left({t}^{\mathrm{2}} {ln}\left({t}\right)\right)\right]_{{s}=\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\:\ast\frac{{d}^{\mathrm{2}} \left(\frac{−\gamma−{ln}\left({s}\right)}{{s}}\right)}{{ds}^{\mathrm{2}} } \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\:\ast\frac{{d}}{{ds}}\left(\frac{−\mathrm{1}+\gamma+{ln}\left({s}\right)}{{s}^{\mathrm{2}} }\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\ast\left(\frac{{s}−\mathrm{2}{s}\left(−\mathrm{1}+\gamma+{ln}\left({s}\right)\right)}{{s}^{\mathrm{4}} }\right)\mid_{{s}=\mathrm{1}} \\ $$$$\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{3}−\mathrm{2}\gamma\right)=\frac{\mathrm{3}}{\mathrm{2}}−\gamma\:\:\:\:…. \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *