Menu Close

CALCULUS-0-1-x-2n-1-x-1-dx-n-1-




Question Number 163709 by amin96 last updated on 09/Jan/22
CALCULUS  ∫_0 ^1 (x^(2n−1) /(x+1))dx=?     n≥1
$$\boldsymbol{\mathrm{CALCULUS}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}\boldsymbol{\mathrm{n}}−\mathrm{1}} }{\boldsymbol{\mathrm{x}}+\mathrm{1}}\boldsymbol{\mathrm{dx}}=?\:\:\:\:\:\boldsymbol{\mathrm{n}}\geqslant\mathrm{1} \\ $$
Answered by Mathspace last updated on 09/Jan/22
∫_0 ^(1 )  (x^(2n−1) /(1+x))dx=∫_0 ^1 x^(2n−1) Σ_(p=0) ^(∞ ) (−1)^p x^p dx  =Σ_(p=0) ^∞ (−1)^(p ) ∫_0 ^1 x^(p+2n−1) dx  =Σ_(p=0) ^(∞ )  (((−1)^p )/(p+2n))
$$\int_{\mathrm{0}} ^{\mathrm{1}\:} \:\frac{{x}^{\mathrm{2}{n}−\mathrm{1}} }{\mathrm{1}+{x}}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}{n}−\mathrm{1}} \sum_{{p}=\mathrm{0}} ^{\infty\:} \left(−\mathrm{1}\right)^{{p}} {x}^{{p}} {dx} \\ $$$$=\sum_{{p}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{p}\:} \int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{p}+\mathrm{2}{n}−\mathrm{1}} {dx} \\ $$$$=\sum_{{p}=\mathrm{0}} ^{\infty\:} \:\frac{\left(−\mathrm{1}\right)^{{p}} }{{p}+\mathrm{2}{n}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *