Menu Close

calculus-2-evaluate-n-0-2-n-1-2-2-n-




Question Number 128489 by mnjuly1970 last updated on 07/Jan/21
             ... calculus   (2) ...      evaluate ::        Σ_(n=0) ^∞ ((2^n /(1+2^2^n  )) )=?
calculus(2)evaluate::n=0(2n1+22n)=?
Answered by mindispower last updated on 07/Jan/21
(1/(1−x^2 ))=(1/2)((1/(1−x))+(1/(1+x)))   ⇒(2/(1−x^2 ))−(1/(1−x))=(1/(1+x))  x=2^2^n  ⇒x^2 =2^2^(n+1)    ⇔(2/(1−2^2^(n+1)   ))−(1/(1−2^2^n  ))=(1/(1+2^2^n  ))  ⇔((2.2^n )/(1−2^2^(n+1)  ))−(2^n /(1−2^2^n  ))=(2^n /(1+2^2^n  ))  ⇔(2^(n+1) /(1−2^2^(n+1)  ))−(2^n /(1−2^2^n  ))=(2^n /(1+2^2^n  ))  let V_n =(2^n /(1−2^2^n  ))  (2^n /(1+2^2^n  ))=V_(n+1) −V_n   Σ_(n≥0) ^m (2^n /(1+2^2^n  ))=Σ_(n≥0) ^m V_(n+1) −V_n =V_(m+1) −V_0 ...E  lim_(m→∞) (2^m /(1+2^2^m  ))=lim_(x→∞) (x/(1+2^x ))→0  ⇒lim_(m→∞) Σ_(n≥0) ^m (2^n /(1+2^2^n  ))=Σ_(n≥0) (2^n /(1+2^2^n  ))=−V_0 =−(1/(1−2^1 ))=1  S=1
11x2=12(11x+11+x)21x211x=11+xx=22nx2=22n+12122n+11122n=11+22n2.2n122n+12n122n=2n1+22n2n+1122n+12n122n=2n1+22nletVn=2n122n2n1+22n=Vn+1Vnmn02n1+22n=mn0Vn+1Vn=Vm+1V0Elimm2m1+22m=limxx1+2x0limmmn02n1+22n=n02n1+22n=V0=1121=1S=1
Commented by mnjuly1970 last updated on 08/Jan/21
nice very nice..
niceverynice..

Leave a Reply

Your email address will not be published. Required fields are marked *