Menu Close

calculus-evaluate-i-0-1-t-2-ln-t-ln-1-t-dt-ii-1-4-iii-0-pi-8-ln-tan-x-dx-




Question Number 114302 by mnjuly1970 last updated on 18/Sep/20
        .... calculus ....      evaluate :::                               i::∫_0 ^( 1) t^2 ln(t)ln(1−t)dt=???  ii::: ψ^′ ((1/4))=???  iii::: ∫_0 ^(π/8) ln(tan(x))dx =???
.calculus.evaluate:::i::01t2ln(t)ln(1t)dt=???ii:::ψ(14)=???iii:::0π8ln(tan(x))dx=???
Commented by MJS_new last updated on 18/Sep/20
for ∫ln sin x dx use the same path as I used  for ∫ln cos x dx in question 113634
forlnsinxdxusethesamepathasIusedforlncosxdxinquestion113634
Commented by MJS_new last updated on 18/Sep/20
...you changed it from sin to tan after I  commented...
youchangeditfromsintotanafterIcommented
Answered by Olaf last updated on 18/Sep/20
I_n  = ∫_0 ^1 x^n lnxdx  I_n  = [(x^(n+1) /(n+1))lnx]_0 ^1 − ∫_0 ^1 (x^(n+1) /(n+1)).(dx/x)  I_n  = −[(x^(n+1) /((n+1)^2 ))]_0 ^1  = −(1/((n+1)^2 ))  (1/(1−t)) = Σ_(n=0) ^∞ t^n   ln∣1−t∣ = −Σ_(n=0) ^∞ (t^(n+1) /(n+1)) if ∣t∣<1  I = ∫_0 ^1 t^2 ln(t)ln(1−t)dt  I = −∫_0 ^1 t^2 ln(t)Σ_(n=0) ^∞ (t^(n+1) /(n+1))dt  I = −Σ_(n=0) ^∞ (1/(n+1))∫_0 ^1 t^(n+3) lntdt  I = −Σ_(n=0) ^∞ (I_(n+3) /(n+1)) = Σ_(n=0) ^∞ (1/((n+1)(n+4)^2 ))  I = Σ_(n=1) ^∞ (1/(n(n+3)^2 ))  (1/(n(n+3)^2 )) = (1/(9n))−(1/(9(n+3)))−(1/(3(n+3)^2 ))  I = (1/9)((1/1)+(1/2)+(1/3))−(1/3)Σ_(n=1() ^∞ (1/(n+3)^2 ))  I = ((11)/(54))−(1/3)Σ_(n=4) ^∞ (1/n^2 )  With Σ_(n=1) ^∞ (1/n^2 ) = ξ(2) = (π^2 /6)  I = ((11)/(54))−(1/3)((π^2 /6)−(1/1^2 )−(1/2^2 )−(1/3^2 ))  I = ((71)/(108))−(π^2 /(18)) ≈ 0,109096051
In=01xnlnxdxIn=[xn+1n+1lnx]0101xn+1n+1.dxxIn=[xn+1(n+1)2]01=1(n+1)211t=n=0tnln1t=n=0tn+1n+1ift∣<1I=01t2ln(t)ln(1t)dtI=01t2ln(t)n=0tn+1n+1dtI=n=01n+101tn+3lntdtI=n=0In+3n+1=n=01(n+1)(n+4)2I=n=11n(n+3)21n(n+3)2=19n19(n+3)13(n+3)2I=19(11+12+13)13n=1(1n+3)2I=115413n=41n2Withn=11n2=ξ(2)=π26I=115413(π26112122132)I=71108π2180,109096051
Commented by mnjuly1970 last updated on 19/Sep/20
very good  .thank you sir  your work is admirable...
verygood.thankyousiryourworkisadmirable
Answered by mathmax by abdo last updated on 19/Sep/20
3) I =∫_0 ^(π/8)  ln(tanx)dx   by parts I= [xln(tanx)]_0 ^(π/8) −∫_0 ^(π/8) x×((1+tan^2 x)/(tanx))dx  =(π/8)ln((√2)−1)−∫_0 ^(π/8)  (x/(tanx))dx−∫_0 ^(π/8)  tanx dx  ∫_0 ^(π/8)  tanx dx =[−ln∣cosx∣]_0 ^(π/8)  =−ln(((√2)/2)) =−ln((1/( (√2)))) =((ln2)/2)  A =∫_0 ^(π/8)  (x/(tanx))dx ⇒ A =_(tanx=t)    ∫_0 ^((√2)−1)  ((arctant)/t)(dt/(1+t^2 ))  =∫_0 ^((√2)−1) arctan(t){(1/t)−(t/(1+t^2 ))}dt =∫_0 ^((√2)−1)  ((arctant)/t)dt −∫_0 ^((√2)−1)  (t/(1+t^2 )) arctan(t)dt  by parts ∫_0 ^((√2)−1)  (t/(1+t^2 )) arctan(t)dt =[(1/2)ln(1+t^2 )arctant]_0 ^((√2)−1)   −∫_0 ^((√2)−1) (1/2)ln(1+t^2 )×(dt/(1+t^2 )) =(1/2)ln(4−2(√2)) arctan((√2)−1)  −(1/2) ∫_0 ^((√2)−1)  ((ln(1+t^2 ))/(1+t^2 )) dt   we considere f(a) =∫_0 ^((√2)−1)  ((ln(1+at^2 ))/(1+t^2 ))dt  with a>0  f^′ (a) =∫_0 ^((√2)−1)  (t^2 /((1+t^2 )(1+at^2 ))) dt let decompose  F(t) =(t^2 /((t^2  +1)(at^2  +1))) ⇒F(t)=((αt +β)/(t^2  +1)) +((mt+n)/(at^2  +1)) ⇒  F(−t)=F(t) ⇒((−αt +β)/(t^2  +1)) +((−mt +n)/(at^2  +1)) =F(t)⇒α=m=0 ⇒  F(t)=(β/(t^2  +1)) +(n/(at^2  +1)) we haveF(0) =0 =β+n ⇒n=−β  lim_(t→+∞) t^2 F(t) =(1/a) =β +(n/a) ⇒1=aβ +n ⇒1=aβ−β =(a−1)β  ⇒β =(1/(a−1)) ⇒F(t) =(1/((a−1)(t^2  +1)))−(1/((a−1)(at^2  +1))) ⇒  f^′ (a) =(1/(a−1)) ∫_0 ^((√2)−1)  (dt/(t^2  +1))−(1/(a−1))∫_0 ^((√2)−1 )  (dt/(at^2  +1))(→(√a)t =u)  =((arctan((√2)−1))/(a−1))−(1/(a−1)) ∫_0 ^(((√2)−1)(√a))  (du/( (√a)(u^2  +1)))  =((arctan((√2)−1))/(a−1))−(1/( (√a)(a−1)))arctan(((√2)−1)(√a)) ⇒  f(a) =arctan((√2)−1)ln∣a−1∣−∫  ((arctan(((√2)−1)(√a)))/( (√a)(a−1))) da +C  ....be continued...
3)I=0π8ln(tanx)dxbypartsI=[xln(tanx)]0π80π8x×1+tan2xtanxdx=π8ln(21)0π8xtanxdx0π8tanxdx0π8tanxdx=[lncosx]0π8=ln(22)=ln(12)=ln22A=0π8xtanxdxA=tanx=t021arctanttdt1+t2=021arctan(t){1tt1+t2}dt=021arctanttdt021t1+t2arctan(t)dtbyparts021t1+t2arctan(t)dt=[12ln(1+t2)arctant]02102112ln(1+t2)×dt1+t2=12ln(422)arctan(21)12021ln(1+t2)1+t2dtweconsideref(a)=021ln(1+at2)1+t2dtwitha>0f(a)=021t2(1+t2)(1+at2)dtletdecomposeF(t)=t2(t2+1)(at2+1)F(t)=αt+βt2+1+mt+nat2+1F(t)=F(t)αt+βt2+1+mt+nat2+1=F(t)α=m=0F(t)=βt2+1+nat2+1wehaveF(0)=0=β+nn=βlimt+t2F(t)=1a=β+na1=aβ+n1=aββ=(a1)ββ=1a1F(t)=1(a1)(t2+1)1(a1)(at2+1)f(a)=1a1021dtt2+11a1021dtat2+1(at=u)=arctan(21)a11a10(21)adua(u2+1)=arctan(21)a11a(a1)arctan((21)a)f(a)=arctan(21)lna1arctan((21)a)a(a1)da+C.becontinued
Answered by maths mind last updated on 19/Sep/20
∫_0 ^(π/8) ln(tg(x))dx  ln(tg(x))=−2Σ_(k≥0) ((cos(2(2k+1)x))/(2k+1))  =∫_0 ^(π/8) (−2Σ_(k≥0) ((cos(2(2k+1)x))/(2k+1)))dx  =Σ_(k≥0) −(1/((2k+1)^2 ))sin((((2k+1)π)/4))  =−Σ_(k≥0) (1/((2k+1)^2 ))sin(((kπ)/2)+(π/4))  =−Σ_(k≥0) ((sin((π/4)))/((8k+1)^2 ))−Σ_(k≥0) ((sin((π/4)))/((8k+3)^2 ))+Σ((sin((π/4)))/((8k+5)^2 ))+Σ((sin((π/4)))/((8k+7)^2 ))  =((sin((π/4)))/(64)){−Σ(1/((k+(1/8))^2 ))−Σ(1/((k+(3/8))^2 ))+Σ(1/((k+(5/8))^2 ))+Σ(1/((k+(7/8))^2 ))}  Σ_(n≥0) (1/((n+a)^p ))=ζ(a,p) hurwitz zeta function    =((sin((π/4)))/(64)){−ζ((1/8),2)−ζ((3/8),2)+ζ((5/8),2)+ζ((7/8),2)}
0π8ln(tg(x))dxln(tg(x))=2k0cos(2(2k+1)x)2k+1=0π8(2k0cos(2(2k+1)x)2k+1)dx=k01(2k+1)2sin((2k+1)π4)=k01(2k+1)2sin(kπ2+π4)=k0sin(π4)(8k+1)2k0sin(π4)(8k+3)2+Σsin(π4)(8k+5)2+Σsin(π4)(8k+7)2=sin(π4)64{Σ1(k+18)2Σ1(k+38)2+Σ1(k+58)2+Σ1(k+78)2}n01(n+a)p=ζ(a,p)hurwitzzetafunction=sin(π4)64{ζ(18,2)ζ(38,2)+ζ(58,2)+ζ(78,2)}
Commented by mnjuly1970 last updated on 19/Sep/20
very nice sir .thanks alot..
verynicesir.thanksalot..
Answered by Olaf last updated on 19/Sep/20
iii...  I = ∫_0 ^(π/8) ln(tanx)dx  tan2θ = ((2tanθ)/(1−tan^2 θ))  with θ = (π/8), tan(π/4) = ((2tan(π/8))/(1−tan^2 (π/8))) = 1  tan^2 (π/8)+2tan(π/8)−1 = 0  ⇒ tan(π/8) = (√2)−1  Now u = tanx  du = (1+tan^2 x)dx = (1+u^2 )dx  I = ∫_0 ^((√2)−1) ((lnu)/(1+u^2 ))du  I = ∫_0 ^((√2)−1) lnuΣ_(n=0) ^∞ (−1)^n u^(2n) du  I = Σ_(n=0) ^∞ (−1)^n ∫_0 ^((√2)−1) u^(2n) lnudu  I = Σ_(n=0) ^∞ (−1)^n ([(u^(2n+1) /(2n+1))lnu]_0 ^((√2)−1) −∫_0 ^((√2)−1) (u^(2n+1) /(2n+1)).(du/u))  I = Σ_(n=0) ^∞ (−1)^n (ln((√2)−1)[((((√2)−1)^(2n+1) )/(2n+1))]−[(u^(2n+1) /((2n+1)^2 ))]_0 ^((√2)−1) )  I = Σ_(n=0) ^∞ (−1)^n (ln((√2)−1)[((((√2)−1)^(2n+1) )/(2n+1))]−[((((√2)−1)^(2n+1) )/((2n+1)^2 ))])  arctanx = Σ_(n=0) ^∞ (−1)^n (x^(2n+1) /(2n+1))  I = ln((√2)−1)arctan((√2)−1)−Σ_(n=0) ^∞ (−1)^n ((((√2)−1)^(2n+1) )/((2n+1)^2 ))  I = (π/8)ln((√2)−1)−Σ_(n=0) ^∞ (−1)^n ((((√2)−1)^(2n+1) )/((2n+1)^2 ))  I think we cannot simplify
iiiI=0π8ln(tanx)dxtan2θ=2tanθ1tan2θwithθ=π8,tanπ4=2tanπ81tan2π8=1tan2π8+2tanπ81=0tanπ8=21Nowu=tanxdu=(1+tan2x)dx=(1+u2)dxI=021lnu1+u2duI=021lnun=0(1)nu2nduI=n=0(1)n021u2nlnuduI=n=0(1)n([u2n+12n+1lnu]021021u2n+12n+1.duu)I=n=0(1)n(ln(21)[(21)2n+12n+1][u2n+1(2n+1)2]021)I=n=0(1)n(ln(21)[(21)2n+12n+1][(21)2n+1(2n+1)2])arctanx=n=0(1)nx2n+12n+1I=ln(21)arctan(21)n=0(1)n(21)2n+1(2n+1)2I=π8ln(21)n=0(1)n(21)2n+1(2n+1)2Ithinkwecannotsimplify
Answered by mathmax by abdo last updated on 20/Sep/20
A =∫_0 ^1  x^2 ln(x)ln(1−x)dx  we have (d/dx)ln(1−x) =((−1)/(1−x))=−Σ_(n=0) ^∞  x^n   ⇒ln(1−x) =−Σ_(n=0) ^∞  (x^(n+1) /(n+1)) +c  (c=0) =−Σ_(n=1) ^∞  (x^n /n) ⇒  A =−∫_0 ^1  x^2 lnx(Σ_(n=1) ^∞  (x^n /n))dx =−Σ_(n=1) ^∞  (1/n) ∫_0 ^1  x^(n+2)  ln(x)dx  u_n =∫_0 ^1  x^(n+2) ln(x)dx =[(x^(n+3) /(n+3))ln(x)]_0 ^1  −∫_0 ^1  (x^(n+2) /(n+3)) dx  =−(1/((n+3)^2 )) ⇒ A =Σ_(n=1) ^∞  (1/(n(n+3)^2 )) let decompose  F(x) =(1/(x(x+3)^2 )) ⇒F(x) =(a/x) +(b/(x+3)) +(c/((x+3)^2 ))  a=(1/9) , c =−(1/3) ⇒F(x) =(1/(9x)) +(b/(x+3))−(1/(3(x+3)^2 ))  lim_(x→+∞) xF(x) =0 =(1/9) +b ⇒b=−(1/9) ⇒  A =lim_(n→+∞) A_n /        A_n =Σ_(k=1) ^n  (1/(k(k+3)^2 ))  =(1/9) Σ_(k=1) ^n  (1/k)−(1/9)Σ_(k=1) ^n  (1/(k+3))−(1/3) Σ_(k=1) ^n  (1/((k+3)^2 ))  =(1/9)Σ_(k=1) ^n  (1/k)−(1/9) Σ_(k=4) ^(n+3) −(1/3)Σ_(k=4) ^(n+3)  (1/k^2 )  =(1/9)(1 +(1/2)+(1/3))−(1/9)((1/(n+1))+(1/(n+2))+(1/(n+3)))−(1/3)(Σ_(k=1) ^(n+3)  (1/k^2 )−1−(1/2^2 )−(1/3^2 ))  →(1/9)((3/2)+(1/3))−(1/3)×(π^2 /6) +(1/3)(1+(1/4)+(1/9))  =(1/9)(((11)/6))−(π^2 /(18)) +(1/3)((5/4)+(1/9)) =((11)/(54))−(π^2 /(18))+(1/3)(((49)/(36))) =((11)/(54))+((49)/(108))−(π^2 /(18))  ⇒∫_0 ^1  x^2 lnx ln(1−x)dx =((11)/(54))+((49)/(108))−(π^2 /(18))
A=01x2ln(x)ln(1x)dxwehaveddxln(1x)=11x=n=0xnln(1x)=n=0xn+1n+1+c(c=0)=n=1xnnA=01x2lnx(n=1xnn)dx=n=11n01xn+2ln(x)dxun=01xn+2ln(x)dx=[xn+3n+3ln(x)]0101xn+2n+3dx=1(n+3)2A=n=11n(n+3)2letdecomposeF(x)=1x(x+3)2F(x)=ax+bx+3+c(x+3)2a=19,c=13F(x)=19x+bx+313(x+3)2limx+xF(x)=0=19+bb=19A=limn+An/An=k=1n1k(k+3)2=19k=1n1k19k=1n1k+313k=1n1(k+3)2=19k=1n1k19k=4n+313k=4n+31k2=19(1+12+13)19(1n+1+1n+2+1n+3)13(k=1n+31k21122132)19(32+13)13×π26+13(1+14+19)=19(116)π218+13(54+19)=1154π218+13(4936)=1154+49108π21801x2lnxln(1x)dx=1154+49108π218
Commented by mathmax by abdo last updated on 20/Sep/20
⇒∫_0 ^1  x^2 lnxln(1−x)dx =((71)/(108))−(π^2 /(18))
01x2lnxln(1x)dx=71108π218
Answered by maths mind last updated on 20/Sep/20
Ψ_1 ((1/4))=∫_0 ^∞ ((ln(x)x^(−(3/4)) )/(x−1))dx  x^(1/4) =t⇒dt=((x^(−(3/4)) dx)/4)  =∫_0 ^∞ ((4ln(t^4 ))/(t^4 −1))dt  =16∫_0 ^1 ((ln(t))/((t^2 −1)(t^2 +1)))dt  =8∫_0 ^1 ((ln(t))/(t^2 −1))−∫_0 ^1 ((ln(t))/(t^2 +1))  =−8∫_0 ^1 Σ_(k≥0) t^(2k) ln(t)dt−8Σ_(m≥0) ∫_0 ^1 (−t^2 )^m ln(t)dt  =−8Σ_(k≥0) ∫_0 ^1 t^(2k) ln(t)dt−8Σ(−1)^m ∫_0 ^1 t^(2m) ln(t)dt  ∫_0 ^1 t^n ln(t)=[((t^(n+1) ln(t))/(n+1))]_0 ^1 −∫(t^n /(n+1))dt=−(1/((n+1)^2 ))  =8Σ_(k≥0) (1/((2k+1)^2 ))+8.Σ(((−1)^k )/((2k+1)^2 ))  =8.(3/4)ζ(2)+8.G  =π^2 +8G
Ψ1(14)=0ln(x)x34x1dxx14=tdt=x34dx4=04ln(t4)t41dt=1601ln(t)(t21)(t2+1)dt=801ln(t)t2101ln(t)t2+1=801k0t2kln(t)dt8m001(t2)mln(t)dt=8k001t2kln(t)dt8Σ(1)m01t2mln(t)dt01tnln(t)=[tn+1ln(t)n+1]01tnn+1dt=1(n+1)2=8k01(2k+1)2+8.Σ(1)k(2k+1)2=8.34ζ(2)+8.G=π2+8G

Leave a Reply

Your email address will not be published. Required fields are marked *