Menu Close

calculus-evaluate-I-0-pi-2-tan-2x-sin-4-x-4cos-2-x-cos-4-x-4sin-2-x-dx-m-n-july-1970-




Question Number 114472 by mnjuly1970 last updated on 19/Sep/20
         ...  calculus...  evaluate ::                    I=∫_0 ^( (π/2)) ((tan(2x))/( (√(sin^4 (x)+4cos^2 (x)))−(√(cos^4 (x)+4sin^2 (x) )))) dx= ???             ...m.n.july.1970....
$$\:\:\:\:\:\:\:\:\:…\:\:{calculus}… \\ $$$${evaluate}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{tan}\left(\mathrm{2}{x}\right)}{\:\sqrt{{sin}^{\mathrm{4}} \left({x}\right)+\mathrm{4}{cos}^{\mathrm{2}} \left({x}\right)}−\sqrt{{cos}^{\mathrm{4}} \left({x}\right)+\mathrm{4}{sin}^{\mathrm{2}} \left({x}\right)\:}}\:{dx}=\:??? \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:…{m}.{n}.{july}.\mathrm{1970}…. \\ $$$$ \\ $$
Commented by Dwaipayan Shikari last updated on 19/Sep/20
∫_0 ^(π/2) ((tan2x)/(sin^4 x+4cos^2 x−cos^4 x−4sin^2 x))((√(sin^4 x+4cos^2 x )) +(√(cos^4 x+4sin^2 x)) )dx  ∫_0 ^(π/2) ((tan2x)/(3cos2x)).((√(sin^4 x−4sin^2 x+4)) +(√(cos^4 x−4cos^2 x+4)))  (1/3)∫_0 ^(π/2) ((tan2x)/(cos2x)).(sin^2 x−2+cos^2 x−2)  (1/2)∫_0 ^(π/2) ((−2sin2x)/(cos^2 2x))dx      (sin^4 x−cos^4 x=sin^2 x−cos^2 x=−cos2x)  (1/2)∫_1 ^(−1) (dt/t^2 )  −(1/2)∫_(−1) ^1 (dt/t^2 )=[(1/(2t))]_(−1) ^1 →Diverges
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{tan}\mathrm{2}{x}}{{sin}^{\mathrm{4}} {x}+\mathrm{4}{cos}^{\mathrm{2}} {x}−{cos}^{\mathrm{4}} {x}−\mathrm{4}{sin}^{\mathrm{2}} {x}}\left(\sqrt{{sin}^{\mathrm{4}} {x}+\mathrm{4}{cos}^{\mathrm{2}} {x}\:}\:+\sqrt{{cos}^{\mathrm{4}} {x}+\mathrm{4}{sin}^{\mathrm{2}} {x}}\:\right){dx} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{tan}\mathrm{2}{x}}{\mathrm{3}{cos}\mathrm{2}{x}}.\left(\sqrt{{sin}^{\mathrm{4}} {x}−\mathrm{4}{sin}^{\mathrm{2}} {x}+\mathrm{4}}\:+\sqrt{{cos}^{\mathrm{4}} {x}−\mathrm{4}{cos}^{\mathrm{2}} {x}+\mathrm{4}}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{tan}\mathrm{2}{x}}{{cos}\mathrm{2}{x}}.\left({sin}^{\mathrm{2}} {x}−\mathrm{2}+{cos}^{\mathrm{2}} {x}−\mathrm{2}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{−\mathrm{2}{sin}\mathrm{2}{x}}{{cos}^{\mathrm{2}} \mathrm{2}{x}}{dx}\:\:\:\:\:\:\left({sin}^{\mathrm{4}} {x}−{cos}^{\mathrm{4}} {x}={sin}^{\mathrm{2}} {x}−{cos}^{\mathrm{2}} {x}=−{cos}\mathrm{2}{x}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{1}} ^{−\mathrm{1}} \frac{{dt}}{{t}^{\mathrm{2}} } \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}}\int_{−\mathrm{1}} ^{\mathrm{1}} \frac{{dt}}{{t}^{\mathrm{2}} }=\left[\frac{\mathrm{1}}{\mathrm{2}{t}}\right]_{−\mathrm{1}} ^{\mathrm{1}} \rightarrow{Diverges} \\ $$
Commented by mnjuly1970 last updated on 19/Sep/20
peace be upon you mr  payan.thank you so  much...
$${peace}\:{be}\:{upon}\:{you}\:{mr} \\ $$$${payan}.{thank}\:{you}\:{so} \\ $$$${much}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *