Menu Close

calculus-I-complex-analysis-calculate-0-ln-x-x-2-3x-2-dx-ln-2-2-2-




Question Number 127224 by mnjuly1970 last updated on 28/Dec/20
  ... calculus  (I) −complex analysis...      calculate ::     Φ = ∫_0 ^( ∞) ((ln(x))/(x^2 +3x+2)) dx=((ln^2 (2))/2)
calculus(I)complexanalysiscalculate::Φ=0ln(x)x2+3x+2dx=ln2(2)2
Answered by mindispower last updated on 27/Dec/20
f(z)=((ln(z))/(z^2 +2z+3)),a=−1−i(√2)  ∫_0 ^∞ ((ln^2 (z))/(z^2 +2z+3))−∫_0 ^∞ (((ln(z)+2iπ)^2 )/(z^2 +2z+3))dz=2iπRes(f(z),a,a^− )  =−4iπ∫_0 ^∞ ((ln(z))/(z^2 +2z+3))+∫_0 ^∞ ((4π^2 dz)/(z^2 +2z+3))=2iπRes(f,a^− ,a)  ⇒∫_0 ^∞ ((ln(z))/(z^2 +2z+3))dz=−(1/2)Re(Res(f,a,a^− ))  Res(f,a,a^− )=((ln(a))/(2a+2))+((ln(a^− ))/(2a^− +2))  ln(−1−i(√2))=ln((√3))+i(arctan((√2))+π)  ln(−1+i(√2))=ln((√3))+i(π−arctan((√2)))  =(((ln((√3))+i(π+arctan((√2)))^2 )/(−2i(√2)))+(((ln((√3))+i(π−arctan((√2))))^2 )/(2i(√2)))  =2((−iln((√3))arctan((√2))+πarctan((√2)))/(i(√2)))  ∫_0 ^∞ ((ln(x))/(x^2 +2x+3))dx=((ln((√3))arctan((√2)))/( (√2)))≃0,371
f(z)=ln(z)z2+2z+3,a=1i20ln2(z)z2+2z+30(ln(z)+2iπ)2z2+2z+3dz=2iπRes(f(z),a,a)=4iπ0ln(z)z2+2z+3+04π2dzz2+2z+3=2iπRes(f,a,a)0ln(z)z2+2z+3dz=12Re(Res(f,a,a))Res(f,a,a)=ln(a)2a+2+ln(a)2a+2ln(1i2)=ln(3)+i(arctan(2)+π)ln(1+i2)=ln(3)+i(πarctan(2))=(ln(3)+i(π+arctan(2))22i2+(ln(3)+i(πarctan(2)))22i2=2iln(3)arctan(2)+πarctan(2)i20ln(x)x2+2x+3dx=ln(3)arctan(2)20,371
Commented by mnjuly1970 last updated on 28/Dec/20
thank you so much ..
thankyousomuch..
Commented by mindispower last updated on 28/Dec/20
always pleasur
alwayspleasur
Answered by Bird last updated on 28/Dec/20
let ϕ(z)=((ln^2 z)/(z^2  +2z+3)) we have  ∫_0 ^∞  ((ln^2 x)/(x^2  +2x+3))dx−∫_0 ^∞ (((lnx+2iπ)^2 )/(x^2  +2x+3))dx   =2iπ {Res(ϕ,z_1 )+Res(ϕ,z_2 )}(1)  z^2  +2z+3=0→Δ^′  =−2 ⇒  z_1 =−1+i(√2) and z_2 =−1−i(√2)  z_1 =i^2  +i(√2)=i((√2)+i)  =i(√3)e^(isrctan((1/( (√2)))))   =(√3)e^((iπ)/2)  e^(i((π/2)−arctan((√2))))   =(√3)e^(i(π−arctan((√2))))   z_2 =i^2 −i(√2)=i(−(√2)+i)  =e^((iπ)/2)  (√3) e^(iarctan(−(1/( (√2)))))   =(√3)e^((iπ)/2)  e^(−i((π/2)−arcta((√2))))   =(√3)e^(iarctan((√2)))  ⇒  Res(ϕ,z_1 )=((ln^2 (z_1 ))/(z_1 −z_2 ))  =(((ln((√3))+i(π−arctan(√2))^2 )/(2i(√2)))=...  Res(ϕ,z_2 )=(((ln((√3))+iarctan((√2)))^2 )/(−2i(√2)))  (1) ⇒−∫_0 ^∞  ((4iπlnx−4π^2 )/(x^2  +2x+3))dx  =2iπΣ Res(..) ⇒  ∫_0 ^∞   ((lnx)/(x^2  +2x+3))dx=−(1/2)Re(Σ Res)  rest to calculate Σ Res(f,z_1 )  ...be vontinued...
letφ(z)=ln2zz2+2z+3wehave0ln2xx2+2x+3dx0(lnx+2iπ)2x2+2x+3dx=2iπ{Res(φ,z1)+Res(φ,z2)}(1)z2+2z+3=0Δ=2z1=1+i2andz2=1i2z1=i2+i2=i(2+i)=i3eisrctan(12)=3eiπ2ei(π2arctan(2))=3ei(πarctan(2))z2=i2i2=i(2+i)=eiπ23eiarctan(12)=3eiπ2ei(π2arcta(2))=3eiarctan(2)Res(φ,z1)=ln2(z1)z1z2=(ln(3)+i(πarctan2)22i2=Res(φ,z2)=(ln(3)+iarctan(2))22i2(1)04iπlnx4π2x2+2x+3dx=2iπΣRes(..)0lnxx2+2x+3dx=12Re(ΣRes)resttocalculateΣRes(f,z1)bevontinued

Leave a Reply

Your email address will not be published. Required fields are marked *