Menu Close

calculus-I-evaluate-I-0-pi-3-log-1-3-tan-x-dx-




Question Number 116284 by mnjuly1970 last updated on 02/Oct/20
             ...  calculus I ...       evaluate :          I := ∫_0 ^( (π/3)) log(1+(√3) tan(x))dx=???
calculusIevaluate:I:=0π3log(1+3tan(x))dx=???
Answered by Dwaipayan Shikari last updated on 02/Oct/20
I=∫_0 ^(π/3) log(cosx+(√3)sinx)−log(cosx)dx     =[∫_0 ^(π/3) log(sin((π/6)+x))−log(cosx)]→(I_0 )+∫_0 ^(π/3) log(2)dx  =[∫_0 ^(π/3) log(sinx((π/2)−x))−log(cos((π/3)−x))]→(I_0 )+(π/3)log(2)  2I_0 =∫_0 ^(π/3) log(cosx)−log(cosx)+(1/2)cosx−(1/2)cosx+((√3)/2)sinx−((√3)/2)sinx  I_0 =0  So  I=I_0 +(π/3)log(2)  I=(π/3)log(2)
I=0π3log(cosx+3sinx)log(cosx)dx=[0π3log(sin(π6+x))log(cosx)](I0)+0π3log(2)dx=[0π3log(sinx(π2x))log(cos(π3x))](I0)+π3log(2)2I0=0π3log(cosx)log(cosx)+12cosx12cosx+32sinx32sinxI0=0SoI=I0+π3log(2)I=π3log(2)
Commented by mnjuly1970 last updated on 02/Oct/20
nice very nice as  always...thank you...
niceveryniceasalwaysthankyou
Commented by Dwaipayan Shikari last updated on 02/Oct/20
��
Answered by mnjuly1970 last updated on 02/Oct/20
    I=^(∫_0 ^( a) f(x)dx=∫_0 ^( a) f(a−x)dx) ∫_0 ^( (π/3)) log(1+(√(3 )) ((((√3)−tan(x))/( 1+(√3)tan(x)))))dx  =∫_0 ^( (π/3)) log((4/(1+(√3)tan(x))))dx=(π/3)log(4)−I    ∴  I =(π/3) log(2)  ...✓        m.n.1970
I=0af(x)dx=0af(ax)dx0π3log(1+3(3tan(x)1+3tan(x)))dx=0π3log(41+3tan(x))dx=π3log(4)II=π3log(2)m.n.1970
Answered by Bird last updated on 03/Oct/20
let g(a) =∫_0 ^(π/3) ln(1+atanx)dx ⇒  g^′ (a) =∫_0 ^(π/3)   ((tanx)/(1+atanx))dx  =(1/a)∫_0 ^(π/3)  ((1+atanx−1)/(1+atanx)) dx  =(π/(3a)) −(1/a)∫_0 ^(π/3) (dx/(1+atanx)) but  ∫_0 ^(π/3)  (dx/(1+atanx)) =_(tanx=t)   ∫_0 ^(√3)  (dt/((1+t^2 )(1+at)))  let decompose F(t) =(1/((at+1)(t^2 +1)))  F(t) =(α/(at+1)) +((mt+n)/(t^2  +1))  α =(1/((1/a^2 )+1)) =(a^2 /(1+a^2 ))  lim_(t→+∞) tF(t) =0 =(α/a) +m ⇒  m=−(α/a) =−(a/(1+a^2 ))  F(0)=1 =α +n ⇒n=1−α  =1−(a^2 /(1+a^2 )) =(1/(1+a^2 ))  ⇒F(t)=(a^2 /((1+a^2 )(at+1)))+((−(a/(1+a^2 ))t+(1/(1+a^2 )))/(t^2  +1))  ⇒∫_0 ^(π/3)  (dx/(1+atanx))  =(a^2 /(1+a^2 ))∫_0 ^(√3)  (dt/(at +1))−(a/(1+a^2 ))∫_0 ^(√3) (t/(t^2  +1))dt  +(1/(1+a^2 )) ∫_0 ^(√3)  (dt/(1+t^2 ))  =(a/(1+a^2 ))[ln(at+1)]_0 ^(√3) −(a/(2(1+a^2 )))[ln(1+t^2 )]_0 ^(√3)   +(1/(1+a^2 ))×(π/3)  =(a/(1+a^2 ))ln(a(√3)+1)−(a/((1+a^2 )))ln2  +(π/(3(1+a^2 )))
letg(a)=0π3ln(1+atanx)dxg(a)=0π3tanx1+atanxdx=1a0π31+atanx11+atanxdx=π3a1a0π3dx1+atanxbut0π3dx1+atanx=tanx=t03dt(1+t2)(1+at)letdecomposeF(t)=1(at+1)(t2+1)F(t)=αat+1+mt+nt2+1α=11a2+1=a21+a2limt+tF(t)=0=αa+mm=αa=a1+a2F(0)=1=α+nn=1α=1a21+a2=11+a2F(t)=a2(1+a2)(at+1)+a1+a2t+11+a2t2+10π3dx1+atanx=a21+a203dtat+1a1+a203tt2+1dt+11+a203dt1+t2=a1+a2[ln(at+1)]03a2(1+a2)[ln(1+t2)]03+11+a2×π3=a1+a2ln(a3+1)a(1+a2)ln2+π3(1+a2)
Commented by Bird last updated on 03/Oct/20
⇒g^′ (a) =(π/(3a))−(1/a){(a/(1+a^2 ))ln(a(√3)+1)  −((aln2)/(1+a^2 ))+(π/(3(1+a^2 )))}  =(π/(3a))−((ln(a(√3)+1))/(1+a^2 )) +((ln2)/(1+a^2 ))−(π/(3a(1+a^2 )))  ⇒g(a) =(π/3)lna−∫((ln(a(√3)+1))/(1+a^2 ))da  +ln2 arctana−(π/3)∫  (da/(a(1+a^2 )))  ...be continued...
g(a)=π3a1a{a1+a2ln(a3+1)aln21+a2+π3(1+a2)}=π3aln(a3+1)1+a2+ln21+a2π3a(1+a2)g(a)=π3lnaln(a3+1)1+a2da+ln2arctanaπ3daa(1+a2)becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *