Menu Close

calculus-I-please-evaluate-0-1-1-1-x-6-dx-




Question Number 126766 by mnjuly1970 last updated on 24/Dec/20
             ...calculus  (I)...      please  evaluate ::                Ψ=∫_0 ^( 1) ( (1/(1+x^6 )) )dx=?
calculus(I)pleaseevaluate::Ψ=01(11+x6)dx=?
Answered by Ar Brandon last updated on 24/Dec/20
x_k ^6 +1=0 ⇒ x_k =e^(((2k+1)πi)/6)   ⇒x^6 +1=Π_(k=0) ^5 (x−x_k )  ⇒Ψ=∫_0 ^1 (dx/(Π_(k=0) ^5 (x−x_k )))=∫_0 ^1 Σ_(k=0) ^5 (a_k /(x−x_k ))dx  a_k =(1/(6x_k ^5 ))=−(x_k /6)  Ψ=−(1/6)∫_0 ^1 Σ_(k=0) ^5 (x_k /(x−x_k ))dx=−(1/6){Σ_(k=0) ^5 x_k ln∣x−x_k ∣}_0 ^1       =−(1/6)Σ_(k=0) ^5 x_k ln∣((x_k −1)/x_k )∣
xk6+1=0xk=e(2k+1)πi6x6+1=5k=0(xxk)Ψ=01dx5k=0(xxk)=015k=0akxxkdxak=16xk5=xk6Ψ=16015k=0xkxxkdx=16{5k=0xklnxxk}01=165k=0xklnxk1xk
Commented by mnjuly1970 last updated on 24/Dec/20
thank you so much sir brandon..
thankyousomuchsirbrandon..
Answered by mindispower last updated on 24/Dec/20
=∫_0 ^1 ((1−x^6 )/(1−x^(12_ )   ))  =(1/(12))∫_0 ^1 ((1−t^(1/2) )/(1−t)).t^(−((11)/(12)))   =(1/(12))(−γ+∫_0 ^1 ((t^(−((11)/(12))) −1)/(1−t))dt)−(1/(12))(−γ+∫_0 ^1 ((1−t^((−5)/(12)) )/(1−t))dt)  =((Ψ((1/(12)))−Ψ((7/(12))))/(12)).   we have close for Ψ((p/q))=−γ−ln(2q)−(π/2)cot(((pπ)/q))  +2Σ_1 ^([((q−1)/2)]) cos(((2πnp)/q))ln(sin(((πn)/q)))
=011x61x12=112011t121t.t1112=112(γ+01t111211tdt)112(γ+011t5121tdt)=Ψ(112)Ψ(712)12.wehavecloseforΨ(pq)=γln(2q)π2cot(pπq)+2[q12]1cos(2πnpq)ln(sin(πnq))
Commented by mnjuly1970 last updated on 24/Dec/20
grateful..peace be upon you  sir  minds..
grateful..peacebeuponyousirminds..
Answered by MJS_new last updated on 24/Dec/20
Ψ=∫_0 ^1 (dx/(x^6 +1))=[Σ_(j=1) ^5 I_j ]_0 ^1   I_1 =(1/3)∫_0 ^1 (dx/(x^2 +1))=(1/3)[arctan x]_0 ^1 =(π/(12))  I_2 =(1/(12))∫_0 ^1 (dx/(x^2 +(√3)x+1))=(1/6)[arctan (2x+(√3))]_0 ^1 =(π/(72))  I_3 =((√3)/(12))∫((2x+(√3))/(x^2 +(√3)x+1))=((√3)/(12))[ln (x^2 +(√3)x+1)]_0 ^1 =((√3)/(12))ln (2+(√3))  I_4 =(1/(12))∫(dx/(x^2 −(√3)x+1))=(1/6)[arctan (2x−(√3))]_0 ^1 =((5π)/(72))  I_5 =−((√3)/(12))∫((2x−3)/(x^2 −(√3)x+1))=−((√3)/(12))[ln (x^2 −(√3)x+1)]_0 ^1 =−((√3)/(12))ln (2−(√3))  ⇒  Ψ=(π/6)+((√3)/6)ln (2+(√3))
Ψ=10dxx6+1=[5j=1Ij]01I1=1310dxx2+1=13[arctanx]01=π12I2=11210dxx2+3x+1=16[arctan(2x+3)]01=π72I3=3122x+3x2+3x+1=312[ln(x2+3x+1)]01=312ln(2+3)I4=112dxx23x+1=16[arctan(2x3)]01=5π72I5=3122x3x23x+1=312[ln(x23x+1)]01=312ln(23)Ψ=π6+36ln(2+3)
Commented by mnjuly1970 last updated on 24/Dec/20
thanks alot mr  mjs..
thanksalotmrmjs..
Answered by mnjuly1970 last updated on 24/Dec/20
 Ψ=(1/2)∫_0 ^( 1() ((1+x^4 −x^2 )+x^2 +(1−x^4 ))/(1+x^6 ))dx   Ψ=(1/2)[∫_0 ^( 1) (1/(1+x^2 ))dx=Ω_1 ]+(1/2)[∫_0 ^( 1) (x^2 /(1+(x^3 )^2 ))dx=Ω_2 ]         +(1/2)[∫_0 ^( 1) ((1−x^2 )/(1−x^2 +x^4 ))dx=Ω_3 ]    ∴ Ω_1 =(π/4)         Ω_2 =^(x^3 =t) (1/3)∫_0 ^( 1) (1/(1+t^2 ))dt=(π/(12))       Ω_3 =−∫((1−x^(−2) )/(x^2 −1+x^(−2) ))dx=−∫_0 ^( 1) ((1−x^(−2) )/((x+x^(−1) )^2 −3))dx  =^(x+x^(−1) =t)  −∫_∞ ^( 2) (dt/(t^2 −3))=(1/(2(√3)))∫_2 ^( ∞) (1/(t−(√3))) −(1/(t+(√3)))   =(1/(2(√3))) ln(((t−(√3))/(t+(√3))))_(2 ) ^∞ =−(1/(2(√3)))ln(((2−(√3))/(2+(√3)))) ✓     Ψ=(π/8)+(π/(24))−(1/(4(√3))) ln(((2−(√3))/(2+(√3))))=(π/6)+(1/(4(√3))) ln(((2+(√3))/(2−(√3))))✓    =(π/6)+(1/(2(√3)))ln(2+(√3) )✓
Ψ=1201(1+x4x2)+x2+(1x4)1+x6dxΨ=12[0111+x2dx=Ω1]+12[01x21+(x3)2dx=Ω2]+12[011x21x2+x4dx=Ω3]Ω1=π4Ω2=x3=t130111+t2dt=π12Ω3=1x2x21+x2dx=011x2(x+x1)23dx=x+x1=t2dtt23=12321t31t+3=123ln(t3t+3)2=123ln(232+3)Ψ=π8+π24143ln(232+3)=π6+143ln(2+323)=π6+123ln(2+3)

Leave a Reply

Your email address will not be published. Required fields are marked *