Question Number 126766 by mnjuly1970 last updated on 24/Dec/20

Answered by Ar Brandon last updated on 24/Dec/20

Commented by mnjuly1970 last updated on 24/Dec/20

Answered by mindispower last updated on 24/Dec/20
![=∫_0 ^1 ((1−x^6 )/(1−x^(12_ ) )) =(1/(12))∫_0 ^1 ((1−t^(1/2) )/(1−t)).t^(−((11)/(12))) =(1/(12))(−γ+∫_0 ^1 ((t^(−((11)/(12))) −1)/(1−t))dt)−(1/(12))(−γ+∫_0 ^1 ((1−t^((−5)/(12)) )/(1−t))dt) =((Ψ((1/(12)))−Ψ((7/(12))))/(12)). we have close for Ψ((p/q))=−γ−ln(2q)−(π/2)cot(((pπ)/q)) +2Σ_1 ^([((q−1)/2)]) cos(((2πnp)/q))ln(sin(((πn)/q)))](https://www.tinkutara.com/question/Q126772.png)
Commented by mnjuly1970 last updated on 24/Dec/20

Answered by MJS_new last updated on 24/Dec/20
![Ψ=∫_0 ^1 (dx/(x^6 +1))=[Σ_(j=1) ^5 I_j ]_0 ^1 I_1 =(1/3)∫_0 ^1 (dx/(x^2 +1))=(1/3)[arctan x]_0 ^1 =(π/(12)) I_2 =(1/(12))∫_0 ^1 (dx/(x^2 +(√3)x+1))=(1/6)[arctan (2x+(√3))]_0 ^1 =(π/(72)) I_3 =((√3)/(12))∫((2x+(√3))/(x^2 +(√3)x+1))=((√3)/(12))[ln (x^2 +(√3)x+1)]_0 ^1 =((√3)/(12))ln (2+(√3)) I_4 =(1/(12))∫(dx/(x^2 −(√3)x+1))=(1/6)[arctan (2x−(√3))]_0 ^1 =((5π)/(72)) I_5 =−((√3)/(12))∫((2x−3)/(x^2 −(√3)x+1))=−((√3)/(12))[ln (x^2 −(√3)x+1)]_0 ^1 =−((√3)/(12))ln (2−(√3)) ⇒ Ψ=(π/6)+((√3)/6)ln (2+(√3))](https://www.tinkutara.com/question/Q126787.png)
Commented by mnjuly1970 last updated on 24/Dec/20

Answered by mnjuly1970 last updated on 24/Dec/20
![Ψ=(1/2)∫_0 ^( 1() ((1+x^4 −x^2 )+x^2 +(1−x^4 ))/(1+x^6 ))dx Ψ=(1/2)[∫_0 ^( 1) (1/(1+x^2 ))dx=Ω_1 ]+(1/2)[∫_0 ^( 1) (x^2 /(1+(x^3 )^2 ))dx=Ω_2 ] +(1/2)[∫_0 ^( 1) ((1−x^2 )/(1−x^2 +x^4 ))dx=Ω_3 ] ∴ Ω_1 =(π/4) Ω_2 =^(x^3 =t) (1/3)∫_0 ^( 1) (1/(1+t^2 ))dt=(π/(12)) Ω_3 =−∫((1−x^(−2) )/(x^2 −1+x^(−2) ))dx=−∫_0 ^( 1) ((1−x^(−2) )/((x+x^(−1) )^2 −3))dx =^(x+x^(−1) =t) −∫_∞ ^( 2) (dt/(t^2 −3))=(1/(2(√3)))∫_2 ^( ∞) (1/(t−(√3))) −(1/(t+(√3))) =(1/(2(√3))) ln(((t−(√3))/(t+(√3))))_(2 ) ^∞ =−(1/(2(√3)))ln(((2−(√3))/(2+(√3)))) ✓ Ψ=(π/8)+(π/(24))−(1/(4(√3))) ln(((2−(√3))/(2+(√3))))=(π/6)+(1/(4(√3))) ln(((2+(√3))/(2−(√3))))✓ =(π/6)+(1/(2(√3)))ln(2+(√3) )✓](https://www.tinkutara.com/question/Q126831.png)