Menu Close

calculus-I-prove-i-2x-x-x-1-2-ii-3x-x-x-1-3-x-2-3-




Question Number 126845 by mnjuly1970 last updated on 24/Dec/20
           ... calculus  (I)...      prove ::          i::  ⌊2x⌋=^? ⌊x⌋+⌊x+(1/2)⌋         ii:: ⌊3x⌋=⌊x⌋+⌊x+(1/3)⌋+⌊x+(2/3)⌋
calculus(I)prove::i::2x=?x+x+12ii::3x=x+x+13+x+23
Answered by floor(10²Eta[1]) last updated on 24/Dec/20
i::  ⌊x⌋=n∈Z  x=n+α, 0≤α<1  ⌊2n+2α⌋=n+⌊n+α+(1/2)⌋  (I)⌊2n+2α⌋=2n if α<(1/2)  (II)⌊2n+2α⌋=2n+1 if α≥(1/2)  cheking the cases in the original equation  both of them will work which prove the question    same logic for question 2
i::x=nZx=n+α,0α<12n+2α=n+n+α+12(I)2n+2α=2nifα<12(II)2n+2α=2n+1ifα12chekingthecasesintheoriginalequationbothofthemwillworkwhichprovethequestionsamelogicforquestion2
Answered by mathmax by abdo last updated on 24/Dec/20
[x]=n  ⇒n≤x <n+1 ⇒2n≤2x<2n+2  we have  [2n,2n+2[ =[2n,2n+1[∪[2n+1,2n+2[  if  2x∈[2n,2n+1[ ⇒[2x]=2n  and x∈[n,n+(1/2)[ ⇒[x]=n  x+(1/2)∈[n+(1/2),n+1[ ⇒[x+(1/2)]=n ⇒[x]+[x+(1/2)]=n+n =2n=[2x]  if 2x∈[2n+1,2n+2[ ⇒[2x]=2n+1 and x∈[n+(1/2),n+1[ ⇒[x]=n  x+(1/2)∈[n+1,n+(3/2)[ ⇒[x+(1/2)]=n+1 ⇒[x]+[x+(1/2)]=n+n+1=2n+1  =[2x]  in all cases the dquality is proved..
[x]=nnx<n+12n2x<2n+2wehave[2n,2n+2[=[2n,2n+1[[2n+1,2n+2[if2x[2n,2n+1[[2x]=2nandx[n,n+12[[x]=nx+12[n+12,n+1[[x+12]=n[x]+[x+12]=n+n=2n=[2x]if2x[2n+1,2n+2[[2x]=2n+1andx[n+12,n+1[[x]=nx+12[n+1,n+32[[x+12]=n+1[x]+[x+12]=n+n+1=2n+1=[2x]inallcasesthedqualityisproved..
Answered by mindispower last updated on 24/Dec/20
[x]=n  ⇒n≤x<n+1  x∈[n,n+(1/3)[⇒  [x]=[x+(1/3)]=[x+(2/3)]=n  3x∈[3n,3n+1[⇒[3x]=3n=[x]+[x+(1/3)]+[x+(2/3)]  x∈[n+(1/3);n+(2/3)[  ⇒[x]=[x+(1/3)]=n  [x+(2/3)]=n+1  3x∈[3n+1,3n+2[⇒[3x]=[x[+[x+(1/3)]+[x+(2/3)]=3n+1  and sam for x∈[n+(2/3),n+1[
[x]=nnx<n+1x[n,n+13[[x]=[x+13]=[x+23]=n3x[3n,3n+1[[3x]=3n=[x]+[x+13]+[x+23]x[n+13;n+23[[x]=[x+13]=n[x+23]=n+13x[3n+1,3n+2[[3x]=[x[+[x+13]+[x+23]=3n+1andsamforx[n+23,n+1[

Leave a Reply

Your email address will not be published. Required fields are marked *