Menu Close

calculus-II-analysis-I-consider-the-sequence-c-n-n-1-in-which-c-n-1-1-2-1-3-1-n-ln-n-prove-that-the-above-sequence-is-convergent-and-th




Question Number 122859 by mnjuly1970 last updated on 20/Nov/20
            ... calculus(II)−  analysis(I)...     :::  consider the sequence {c_n }_(n=1) ^∞     in which :: c_n =1+(1/2)+(1/3)+...+(1/n) −ln(n)     prove that the above sequence is     convergent  and then      find its limit.
$$\:\:\:\:\:\:\:\:\:\:\:\:…\:{calculus}\left({II}\right)−\:\:{analysis}\left({I}\right)… \\ $$$$\:\:\::::\:\:{consider}\:{the}\:{sequence}\:\left\{{c}_{{n}} \right\}_{{n}=\mathrm{1}} ^{\infty} \\ $$$$\:\:{in}\:{which}\:::\:{c}_{{n}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…+\frac{\mathrm{1}}{{n}}\:−{ln}\left({n}\right) \\ $$$$\:\:\:{prove}\:{that}\:{the}\:{above}\:{sequence}\:{is} \\ $$$$\:\:\:{convergent}\:\:{and}\:{then}\: \\ $$$$\:\:\:{find}\:{its}\:{limit}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *