Menu Close

calculus-please-evaluate-0-1-ln-x-dx-




Question Number 126969 by mnjuly1970 last updated on 25/Dec/20
                  calculus        please  evaluate ::          φ =∫_0 ^( 1) ⌊ln(x)⌋dx=?
calculuspleaseevaluate::ϕ=01ln(x)dx=?
Answered by mindispower last updated on 25/Dec/20
ln(x)=t  =∫_(−∞) ^0 [t]e^t   =Σ_(k=0) ^∞ ∫_(−k−1) ^(−k) [t]e^t dt  =−Σ_(k=0) ^∞ ∫_(−k−1) ^(−k) (k+1)e^t =  =−Σ_(k=0) ^∞ (k+1)(e^(−k) −e^(−k−1) )dt  =−Σ(ke^(−k) −(k+1)e^(−(k+1)) )−Σ_(k=0) ^∞ e^(−k)   =−(lim_(N→∞) (−(N+1)e^(−(N+1)) )+((1−e^(−(N+1)) )/(1−e^(−1) )))  =−(1/(1−e^(−1) ))=−(e/(e−1))
ln(x)=t=0[t]et=k=0k1k[t]etdt=k=0k1k(k+1)et==k=0(k+1)(ekek1)dt=Σ(kek(k+1)e(k+1))k=0ek=(limN((N+1)e(N+1))+1e(N+1)1e1)=11e1=ee1
Commented by mnjuly1970 last updated on 25/Dec/20
mercey sir midspowdr  grateful...
merceysirmidspowdrgrateful
Answered by mathmax by abdo last updated on 27/Dec/20
Φ=∫_0 ^1 [lnx]dx we do the changement lnx=−t ⇒x=e^(−t)  ⇒  Φ=−∫_0 ^∞ [−t](−e^(−t) )dt =∫_0 ^∞  [−t] e^(−t)  dt  =Σ_(n=0) ^∞  ∫_n ^(n+1) [−t]e^(−t)  dt   we have  n≤t≤n+1 ⇒−n−1≤−t≤−n ⇒  [−t]=−(n+1) ⇒Φ =−Σ_(n=0) ^∞ ∫_n ^(n+1) −(n+1)e^(−t)  dt  =Σ_(n=0) ^∞ (n+1)[−e^(−t) ]_n ^(n+1)  =Σ_(n=0) ^∞  (n+1)(e^(−n) −e^(−(n+1)) )  =Σ_(n=0) ^∞  (n+1)e^(−n)  −Σ_(n=0) ^∞  (n+1)e^(−(n+1))   =Σ_(n=1) ^∞ n e^(−(n−1))  −Σ_(n=1) ^∞ n e^(−n)   =(e−1)Σ_(n=1) ^∞  n((1/e))^n    we have Σ_(n=0) ^∞  x^n  =(1/(1−x)) for∣x∣<1 ⇒  Σ_(n=1) ^∞  nx^(n−1)  =(1/((1−x)^2 )) ⇒Σ_(n=1) ^∞  nx^n  =(x/((1−x)^2 )) ⇒  Σ_(n=1) ^∞  n((1/e))^n  =(1/(e((1/e)−1)^2 )) =(e/((1−e)^2 )) ⇒Φ =(e−1)×(e/((1−e)^2 ))=(e/(1−e))
Φ=01[lnx]dxwedothechangementlnx=tx=etΦ=0[t](et)dt=0[t]etdt=n=0nn+1[t]etdtwehaventn+1n1tn[t]=(n+1)Φ=n=0nn+1(n+1)etdt=n=0(n+1)[et]nn+1=n=0(n+1)(ene(n+1))=n=0(n+1)enn=0(n+1)e(n+1)=n=1ne(n1)n=1nen=(e1)n=1n(1e)nwehaven=0xn=11xforx∣<1n=1nxn1=1(1x)2n=1nxn=x(1x)2n=1n(1e)n=1e(1e1)2=e(1e)2Φ=(e1)×e(1e)2=e1e

Leave a Reply

Your email address will not be published. Required fields are marked *