calculus-please-evaluate-0-1-ln-x-dx- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 126969 by mnjuly1970 last updated on 25/Dec/20 calculuspleaseevaluate::ϕ=∫01⌊ln(x)⌋dx=? Answered by mindispower last updated on 25/Dec/20 ln(x)=t=∫−∞0[t]et=∑∞k=0∫−k−1−k[t]etdt=−∑∞k=0∫−k−1−k(k+1)et==−∑∞k=0(k+1)(e−k−e−k−1)dt=−Σ(ke−k−(k+1)e−(k+1))−∑∞k=0e−k=−(limN→∞(−(N+1)e−(N+1))+1−e−(N+1)1−e−1)=−11−e−1=−ee−1 Commented by mnjuly1970 last updated on 25/Dec/20 merceysirmidspowdrgrateful… Answered by mathmax by abdo last updated on 27/Dec/20 Φ=∫01[lnx]dxwedothechangementlnx=−t⇒x=e−t⇒Φ=−∫0∞[−t](−e−t)dt=∫0∞[−t]e−tdt=∑n=0∞∫nn+1[−t]e−tdtwehaven⩽t⩽n+1⇒−n−1⩽−t⩽−n⇒[−t]=−(n+1)⇒Φ=−∑n=0∞∫nn+1−(n+1)e−tdt=∑n=0∞(n+1)[−e−t]nn+1=∑n=0∞(n+1)(e−n−e−(n+1))=∑n=0∞(n+1)e−n−∑n=0∞(n+1)e−(n+1)=∑n=1∞ne−(n−1)−∑n=1∞ne−n=(e−1)∑n=1∞n(1e)nwehave∑n=0∞xn=11−xfor∣x∣<1⇒∑n=1∞nxn−1=1(1−x)2⇒∑n=1∞nxn=x(1−x)2⇒∑n=1∞n(1e)n=1e(1e−1)2=e(1−e)2⇒Φ=(e−1)×e(1−e)2=e1−e Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-126966Next Next post: nice-calculus-evaluate-0-1-arctan-x-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.