Menu Close

calculus-Please-Evaluate-0-pi-2-x-sin-x-2-dx-M-N-july-1970-




Question Number 112579 by mnjuly1970 last updated on 08/Sep/20
        .... calculus ....  Please  Evaluate :::              Ω = ∫_0 ^(π/2) ((x/(sin(x))))^2 dx =???                     M.N.july 1970#
.calculus.PleaseEvaluate:::Ω=0π2(xsin(x))2dx=???You can't use 'macro parameter character #' in math mode
Answered by mathmax by abdo last updated on 09/Sep/20
Ω =∫_0 ^(π/2)  (x^2 /(sin^2 x))dx ⇒Ω =∫_0 ^(π/2)  (x^2 /(1−cos^2 x)) dx we do the changement  tanx =t ⇒x =arctan(t) ⇒Ω =∫_0 ^∞   ((arctan^2 t)/(1−(1/(1+t^2 ))))×(dt/(1+t^2 ))  =∫_0 ^∞    ((arctan^2 t)/(1+t^2 −1))dt =∫_0 ^∞   ((arctan^2 t)/t^2 ) dt  by parts  ∫_0 ^∞   ((arctan^2 t)/t^2 )dt =[−((arctan^2 t)/t)]_0 ^∞ +∫_0 ^∞  (1/t)×((2arctant)/((1+t^2 )))dt  =2 ∫_0 ^∞   ((arctan(t))/(t(1+t^2 ))) dt  =∫_(−∞) ^(+∞)  ((arctant)/(t(t^2  +1)))dt let ϕ(z) =((arctanz)/(z(z^2  +1)))  ⇒ϕ(z) =((arctan(z))/(z(z−i)(z+i))) residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,o)+Res(ϕ ,i)}  Res(ϕ,o) =lim_(z→0)   zϕ(z) =lim_(z→0)   ((arctanz)/(z^2  +1)) =0  Res(ϕ,i) =lim_(z→i)   (z−i)ϕ(z) =((arctan(i))/(i(2i))) =−(1/2) arctan(i)  ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ×(−(1/2) arctan(i)}  =−iπ arctan(i) ⇒ Ω =−iπ arctan(i) rest to find arctan(i)  ...be continued  we have the formula arctanz =(1/(2i))ln(((1+iz)/(1−iz))) but this is not  applicable for i.....be continued....
Ω=0π2x2sin2xdxΩ=0π2x21cos2xdxwedothechangementtanx=tx=arctan(t)Ω=0arctan2t111+t2×dt1+t2=0arctan2t1+t21dt=0arctan2tt2dtbyparts0arctan2tt2dt=[arctan2tt]0+01t×2arctant(1+t2)dt=20arctan(t)t(1+t2)dt=+arctantt(t2+1)dtletφ(z)=arctanzz(z2+1)φ(z)=arctan(z)z(zi)(z+i)residustheoremgive+φ(z)dz=2iπ{Res(φ,o)+Res(φ,i)}Res(φ,o)=limz0zφ(z)=limz0arctanzz2+1=0Res(φ,i)=limzi(zi)φ(z)=arctan(i)i(2i)=12arctan(i)+φ(z)dz=2iπ×(12arctan(i)}=iπarctan(i)Ω=iπarctan(i)resttofindarctan(i)becontinuedwehavetheformulaarctanz=12iln(1+iz1iz)butthisisnotapplicablefori..becontinued.
Commented by mnjuly1970 last updated on 09/Sep/20
grateful sir mathmax.god   keep  you..
gratefulsirmathmax.godkeepyou..
Commented by mathmax by abdo last updated on 10/Sep/20
thank you sir
thankyousir
Answered by mathdave last updated on 09/Sep/20
my solution to   I=∫_0 ^(π/2) ((x/(sinx)))^2 dx   (using IBP)  I=[−((x^2 cosx)/(sinx))]_0 ^(π/2) +2∫_0 ^(π/2) xcotxdx   (using IBP)  I=0+2[xln(sinx)]_0 ^((.π)/2) −2∫_0 ^(π/2) ln(sinx)dx  I=0+0−2∫_0 ^(π/2) ln(sinx)dx  but ∫_0 ^(π/2) ln(sinx)dx=−(π/2)ln2  ∵I=−2[−(π/2)ln2]=πln2  ∵∫_0 ^(π/2) ((x/(sinx)))^2 dx=πln2  by mathdave(08/09/2020)
mysolutiontoI=0π2(xsinx)2dx(usingIBP)I=[x2cosxsinx]0π2+20π2xcotxdx(usingIBP)I=0+2[xln(sinx)]0.π220π2ln(sinx)dxI=0+020π2ln(sinx)dxbut0π2ln(sinx)dx=π2ln2I=2[π2ln2]=πln20π2(xsinx)2dx=πln2bymathdave(08/09/2020)
Commented by mnjuly1970 last updated on 09/Sep/20
bravo bravo bravo sir   peace be upon you ...mr   dave
bravobravobravosirpeacebeuponyoumrdave
Commented by Tawa11 last updated on 06/Sep/21
great sir
greatsir
Answered by maths mind last updated on 09/Sep/20
let tg((x/2))=t⇒dx=((2dt)/(1+t^2 ))  Ω=∫_0 ^1 ((4arctan^2 (t))/((((2t)/(1+t^2 )))^2 )).((2dt)/((1+t^2 )))=2∫_0 ^1 (1+t^2 )((arctan^2 (t)dt)/t^2 )  =2∫_0 ^1 ((arctan^2 (t))/t^2 )dt_(=2I) +2∫_0 ^1 arctan^2 (t)dt_(=2J)   By Part   J=[tarctan^2 (t)]_0 ^1 −∫((2t)/(1+t^2 ))arctan(t)dt=(π^2 /(16))−∫((2tarctan(t)dt)/(1+t^2 ))  =(π^2 /(16))−[ln(1+t^2 )arctan(t)]_0 ^1 +∫_0 ^1 ((ln(1+t^2 ))/(1+t^2 ))dt  =(π^2 /(16))−ln(2)(π/4)+∫_0 ^1 ((ln(1+t^2 ))/(1+t^2 ))dt  t=tg(δ)⇒∫_0 ^1 ((ln(1+t^2 ))/(1+t^2 ))dt=∫_0 ^(π/4) ln(1+tg^2 (δ))dδ  we use ∫_0 ^(π/2) ln(cos(x))dx=−((πln(2))/2)⇒  −2∫_0 ^(π/2) ln(cos(δ))dδ=−2.((−π)/2)ln(2)=πln(2)  2∫_0 ^(π/4) ln(tg(t))dt=−2G=−2∫_0 ^(π/4) ln(cos(δ))dδ+2∫_(π/4) ^(π/2) ln(cos(δ))dδ  =−2∫_0 ^(π/4) ln(cos(δ))dδ−πln(2)−2∫_0 ^(π/4) ln(cos(δ))dδ⇒−2∫_0 ^(π/4) ln(cos(δ)dδ  =−G+((πln(2))/2)  ⇒J=(π^2 /(16))+((πln(2))/4)−G  I by part=lim_(x→0)   [−(1/t)arctan^2 (t)]_x ^1 +∫_0 ^1 ((2arctan(t))/(t(1+t^2 )))dt  −(π^2 /(16))+2∫_0 ^1 ((1/t)−(t/(1+t^2 )))arctan(t)dt  =−(π^2 /(16))+2∫_0 ^1 ((arctan(t))/t)dt_(=2G) −∫_0 ^1 ((2t)/(1+t^2 ))arcran(t){done lign(5))  =−(π^2 /(16))+2G+ln(2)(π/4)−G=−(π^2 /(16))+G+((πln(2))/4)  2I+2J=πln(2)    G catalan canstant   E∫_0 ^1 ((arctan(t))/t)dt=∫_0 ^1 (1/t)Σ_(k=0) ^∞ (((−1)^k t^(2k+1) )/(2k+1))dt=Σ_(k≥0) (((−1)^k )/((2k+1)^2 ))=G..true  by partE=[ln(t)arctan(t)]_0 ^1 −∫_0 ^1 ((ln(t))/(1+t^2 ))dt  =−∫_0 ^1 ((ln(t))/(1+t^2 ))dt (t=tg(δ))⇒=−∫_0 ^(π/4) ln(tg(δ))dδ proved what   we used  in  lign/11
lettg(x2)=tdx=2dt1+t2Ω=014arctan2(t)(2t1+t2)2.2dt(1+t2)=201(1+t2)arctan2(t)dtt2=201arctan2(t)t2dt=2I+201arctan2(t)dt=2JByPartJ=[tarctan2(t)]012t1+t2arctan(t)dt=π2162tarctan(t)dt1+t2=π216[ln(1+t2)arctan(t)]01+01ln(1+t2)1+t2dt=π216ln(2)π4+01ln(1+t2)1+t2dtt=tg(δ)01ln(1+t2)1+t2dt=0π4ln(1+tg2(δ))dδweuse0π2ln(cos(x))dx=πln(2)220π2ln(cos(δ))dδ=2.π2ln(2)=πln(2)20π4ln(tg(t))dt=2G=20π4ln(cos(δ))dδ+2π4π2ln(cos(δ))dδ=20π4ln(cos(δ))dδπln(2)20π4ln(cos(δ))dδ20π4ln(cos(δ)dδ=G+πln(2)2J=π216+πln(2)4GIbypart=limx0[1tarctan2(t)]x1+012arctan(t)t(1+t2)dtπ216+201(1tt1+t2)arctan(t)dt=π216+201arctan(t)tdt=2G012t1+t2arcran(t){donelign(5))=π216+2G+ln(2)π4G=π216+G+πln(2)42I+2J=πln(2)GcatalancanstantE01arctan(t)tdt=011tk=0(1)kt2k+12k+1dt=k0(1)k(2k+1)2=G..truebypartE=[ln(t)arctan(t)]0101ln(t)1+t2dt=01ln(t)1+t2dt(t=tg(δ))⇒=0π4ln(tg(δ))dδprovedwhatweusedinlign/11
Commented by mnjuly1970 last updated on 09/Sep/20
thank you so much .
thankyousomuch.
Answered by mnjuly1970 last updated on 09/Sep/20
my solution.  ∫_0 ^(π/2) log(sin(x))dx =−(π/2)log(2)   l.h.s=^(i.b.p) [xlog(sin(x))]_0 ^(π/2) −∫_0 ^(π/2) xcot(x)dx    =^(lim_(x→0^+ ) (xlog(sin(x)))=0)   −∫_0 ^(π/2) xcot(x)dx       =^(i.b.p.Again)  −{[(x^2 /2)cot(x)]_0 ^(π/2) + (1/2)∫_0 ^(π/2) (x^2 /(sin^2 (x)))dx =     =−(1/2)∫_0 ^(π/2) (x^2 /(sin^2 (x)))dx =r.h.s=−(π/2)log(2)  ∴     ∫_0 ^(π/2) ((x/(sin(x))))^2 dx =πlog(2) ▲  m.n.july 1970#
mysolution.0π2log(sin(x))dx=π2log(2)l.h.s=i.b.p[xlog(sin(x))]0π20π2xcot(x)dx=limx0+(xlog(sin(x)))=00π2xcot(x)dx=i.b.p.Again{[x22cot(x)]0π2+120π2x2sin2(x)dx==120π2x2sin2(x)dx=r.h.s=π2log(2)0π2(xsin(x))2dx=πlog(2)You can't use 'macro parameter character #' in math mode

Leave a Reply

Your email address will not be published. Required fields are marked *