Question Number 112579 by mnjuly1970 last updated on 08/Sep/20

Answered by mathmax by abdo last updated on 09/Sep/20
![Ω =∫_0 ^(π/2) (x^2 /(sin^2 x))dx ⇒Ω =∫_0 ^(π/2) (x^2 /(1−cos^2 x)) dx we do the changement tanx =t ⇒x =arctan(t) ⇒Ω =∫_0 ^∞ ((arctan^2 t)/(1−(1/(1+t^2 ))))×(dt/(1+t^2 )) =∫_0 ^∞ ((arctan^2 t)/(1+t^2 −1))dt =∫_0 ^∞ ((arctan^2 t)/t^2 ) dt by parts ∫_0 ^∞ ((arctan^2 t)/t^2 )dt =[−((arctan^2 t)/t)]_0 ^∞ +∫_0 ^∞ (1/t)×((2arctant)/((1+t^2 )))dt =2 ∫_0 ^∞ ((arctan(t))/(t(1+t^2 ))) dt =∫_(−∞) ^(+∞) ((arctant)/(t(t^2 +1)))dt let ϕ(z) =((arctanz)/(z(z^2 +1))) ⇒ϕ(z) =((arctan(z))/(z(z−i)(z+i))) residus theorem give ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ{ Res(ϕ,o)+Res(ϕ ,i)} Res(ϕ,o) =lim_(z→0) zϕ(z) =lim_(z→0) ((arctanz)/(z^2 +1)) =0 Res(ϕ,i) =lim_(z→i) (z−i)ϕ(z) =((arctan(i))/(i(2i))) =−(1/2) arctan(i) ⇒∫_(−∞) ^(+∞) ϕ(z)dz =2iπ×(−(1/2) arctan(i)} =−iπ arctan(i) ⇒ Ω =−iπ arctan(i) rest to find arctan(i) ...be continued we have the formula arctanz =(1/(2i))ln(((1+iz)/(1−iz))) but this is not applicable for i.....be continued....](https://www.tinkutara.com/question/Q112627.png)
Commented by mnjuly1970 last updated on 09/Sep/20

Commented by mathmax by abdo last updated on 10/Sep/20

Answered by mathdave last updated on 09/Sep/20
![my solution to I=∫_0 ^(π/2) ((x/(sinx)))^2 dx (using IBP) I=[−((x^2 cosx)/(sinx))]_0 ^(π/2) +2∫_0 ^(π/2) xcotxdx (using IBP) I=0+2[xln(sinx)]_0 ^((.π)/2) −2∫_0 ^(π/2) ln(sinx)dx I=0+0−2∫_0 ^(π/2) ln(sinx)dx but ∫_0 ^(π/2) ln(sinx)dx=−(π/2)ln2 ∵I=−2[−(π/2)ln2]=πln2 ∵∫_0 ^(π/2) ((x/(sinx)))^2 dx=πln2 by mathdave(08/09/2020)](https://www.tinkutara.com/question/Q112635.png)
Commented by mnjuly1970 last updated on 09/Sep/20

Commented by Tawa11 last updated on 06/Sep/21

Answered by maths mind last updated on 09/Sep/20
![let tg((x/2))=t⇒dx=((2dt)/(1+t^2 )) Ω=∫_0 ^1 ((4arctan^2 (t))/((((2t)/(1+t^2 )))^2 )).((2dt)/((1+t^2 )))=2∫_0 ^1 (1+t^2 )((arctan^2 (t)dt)/t^2 ) =2∫_0 ^1 ((arctan^2 (t))/t^2 )dt_(=2I) +2∫_0 ^1 arctan^2 (t)dt_(=2J) By Part J=[tarctan^2 (t)]_0 ^1 −∫((2t)/(1+t^2 ))arctan(t)dt=(π^2 /(16))−∫((2tarctan(t)dt)/(1+t^2 )) =(π^2 /(16))−[ln(1+t^2 )arctan(t)]_0 ^1 +∫_0 ^1 ((ln(1+t^2 ))/(1+t^2 ))dt =(π^2 /(16))−ln(2)(π/4)+∫_0 ^1 ((ln(1+t^2 ))/(1+t^2 ))dt t=tg(δ)⇒∫_0 ^1 ((ln(1+t^2 ))/(1+t^2 ))dt=∫_0 ^(π/4) ln(1+tg^2 (δ))dδ we use ∫_0 ^(π/2) ln(cos(x))dx=−((πln(2))/2)⇒ −2∫_0 ^(π/2) ln(cos(δ))dδ=−2.((−π)/2)ln(2)=πln(2) 2∫_0 ^(π/4) ln(tg(t))dt=−2G=−2∫_0 ^(π/4) ln(cos(δ))dδ+2∫_(π/4) ^(π/2) ln(cos(δ))dδ =−2∫_0 ^(π/4) ln(cos(δ))dδ−πln(2)−2∫_0 ^(π/4) ln(cos(δ))dδ⇒−2∫_0 ^(π/4) ln(cos(δ)dδ =−G+((πln(2))/2) ⇒J=(π^2 /(16))+((πln(2))/4)−G I by part=lim_(x→0) [−(1/t)arctan^2 (t)]_x ^1 +∫_0 ^1 ((2arctan(t))/(t(1+t^2 )))dt −(π^2 /(16))+2∫_0 ^1 ((1/t)−(t/(1+t^2 )))arctan(t)dt =−(π^2 /(16))+2∫_0 ^1 ((arctan(t))/t)dt_(=2G) −∫_0 ^1 ((2t)/(1+t^2 ))arcran(t){done lign(5)) =−(π^2 /(16))+2G+ln(2)(π/4)−G=−(π^2 /(16))+G+((πln(2))/4) 2I+2J=πln(2) G catalan canstant E∫_0 ^1 ((arctan(t))/t)dt=∫_0 ^1 (1/t)Σ_(k=0) ^∞ (((−1)^k t^(2k+1) )/(2k+1))dt=Σ_(k≥0) (((−1)^k )/((2k+1)^2 ))=G..true by partE=[ln(t)arctan(t)]_0 ^1 −∫_0 ^1 ((ln(t))/(1+t^2 ))dt =−∫_0 ^1 ((ln(t))/(1+t^2 ))dt (t=tg(δ))⇒=−∫_0 ^(π/4) ln(tg(δ))dδ proved what we used in lign/11](https://www.tinkutara.com/question/Q112644.png)
Commented by mnjuly1970 last updated on 09/Sep/20

Answered by mnjuly1970 last updated on 09/Sep/20
![my solution. ∫_0 ^(π/2) log(sin(x))dx =−(π/2)log(2) l.h.s=^(i.b.p) [xlog(sin(x))]_0 ^(π/2) −∫_0 ^(π/2) xcot(x)dx =^(lim_(x→0^+ ) (xlog(sin(x)))=0) −∫_0 ^(π/2) xcot(x)dx =^(i.b.p.Again) −{[(x^2 /2)cot(x)]_0 ^(π/2) + (1/2)∫_0 ^(π/2) (x^2 /(sin^2 (x)))dx = =−(1/2)∫_0 ^(π/2) (x^2 /(sin^2 (x)))dx =r.h.s=−(π/2)log(2) ∴ ∫_0 ^(π/2) ((x/(sin(x))))^2 dx =πlog(2) ▲ m.n.july 1970#](https://www.tinkutara.com/question/Q112696.png)